Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » Самая главная молекула. От структуры ДНК к биомедицине XXI века - Максим Франк-Каменецкий

Читать книгу "Самая главная молекула. От структуры ДНК к биомедицине XXI века - Максим Франк-Каменецкий"

387
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 23 24 25 ... 76
Перейти на страницу:

Может быть, так же, на основе перегруппировки готовых генов, можно объяснить изменчивость и у высших организмов? Но тогда получается, что гены возникли однажды, раз и навсегда, а эволюция только тасует их как колоду карт. Новые признаки – это лишь новые комбинации старых генов. Самое неприятное в этой схеме то, что она вроде бы объясняет весь комплекс наблюдений, на котором базируется эволюционная теория. И многовековой опыт селекционеров ни в коей мере не противоречит этому. Все, что ими достигнуто, – это результат перетасовки генов, заранее заготовленных природой.

Природа сама часто использует вновь и вновь в разных организмах однажды найденный белковый дизайн, причем подчас для совершенно разных целей. Один такого рода пример – белок, отвечающий за нашу способность видеть, родопсин. Этот белок, находящийся в сетчатке глаза, поглощает свет и посылает соответствующий сигнал в мозг. Множество таких сигналов, поступающих от различных молекул родопсина в сетчатке, создают зрительный образ в нашем мозгу. Неудивительно, что молекулы родопсина из разных видов организмов, имеющих глаза и мозги, устроены одинаково. Но поразительно то, что практически точно такая же молекула, названная бактериородопсином, встречается у бактерий, не имеющих ни глаз, ни мозгов. Эта молекула выполняет тоже очень важную функцию, хотя и совершенно другую, чем родопсин. Вместо того, чтобы посылать сигналы из глаза в мозг, бактериородопсин снабжает бактерию энергией, будучи ключевым белком в сложном процессе превращения энергии света в химическую энергию АТФ.

Чем больше мы узнаем о генах и их функциях в разных, организмах, тем больше накапливается подобных примеров. Но вместе с тем остается без ответа главный вопрос – откуда все-таки взялись сами эти гены? Возможно, бактериородопсин возник сотни миллионов лет назад и Природа позднее воспользовалась готовым удачным дизайном световой антенны при создании нового хитроумного устройства – глаза. Или наоборот, сначала возник глаз с родопсином, а затем некоторые бактерии воспользовались удачным дизайном для своих целей.

Итак, дарвиновский вопрос о происхождении видов превращается в вопрос о происхождении генов. Может быть, на свете есть фабрика, на которой делаются новые гены, проверяются и отбраковываются негодные? А может быть, такое производство существовало когда-то, на ранних стадиях эволюции, а потом, наработав огромный набор генов, отмерло? Конечно, было бы куда приятнее, если бы эти живые фабрики генов сохранились до сих пор и их удалось бы обнаружить.

Так что же, давайте снаряжать экспедиции, заранее занеся некие диковинные реликтовые существа в Красную книгу? Вот и название уже готово – геногены!

Расчлененные гены

Но не будем торопиться. Если окажется верной гипотеза, выдвинутая У. Гилбертом (это тот самый Гилберт, который участвовал в разработке химического метода чтения ДНКовых текстов, за что был удостоен Нобелевской премии по химии вместе с Сэнгером в 1980 году), то далеко отправляться на поиски нам не придется. И нового названия тоже не потребуется. «Геногены» это не что иное, как эукариоты. Если яснее не стало, то, пожалуйста, это мы с вами! К эукариотам принадлежим не только мы с вами. К ним относятся вообще все высшие организмы: и животные, и растения, и даже некоторые простейшие. Так что если предположение Гилберта справедливо, то недостатка в фабриках генов нет и быть не может, пока есть жизнь на Земле.

Следует признать, что упомянутая гипотеза возникла не от хорошей жизни. Она потребовалась для того, чтобы объяснить совершенно неожиданные факты, обнаруженные после того, как были определены первые же последовательности ДНК, выделенные из высших.

Совершенно естественно, что поскольку аминокислотная последовательность в белках непрерывна, то непрерывной считалась и последовательность нуклеотидов в генах. Многочисленные исследования на бактериях и бактериофагах показали, что это действительно так.

Исследовать детальную структуру генов у высших и их вирусов стало возможным лишь с появлением генной инженерии и после разработки методов чтения ДНКовых текстов. Каково же было изумление и замешательство ученых, когда в 1977 году выяснилось, что гены у высших организмов не непрерывны, а состоят из отдельных кусков, разделенных какими-то другими последовательностями нуклеотидов! ДНК вдруг предстала этаким винегретом из генов, порубленных на части. Когда Ричард Робертс (работавший в то время в возглавлявшейся Уотсоном Колд-Спринг-Харборской лаборатории в окрестностях Нью-Йорка, на Лонг-Айленде) и Филип Шарп (Массачусетский технологический институт) независимо пришли к такому выводу, изучая геном одного из вирусов, вызывающих обычную простуду (аденовирус), это было воспринято в качестве курьеза. Однако затем выяснилось, что так же устроены и глобиновый ген у кролика, и овальбуминовый ген у цыпленка, и гены рибосомальной РНК у плодовой мушки дрозофилы. Короче, так оказались устроены почти все гены высших организмов. За открытие расчлененных генов Робертс и Шарп были в 1993 году удостоены Нобелевской премии по физиологии и медицине.

Промежутки между кусками генов бывают разными – от десятков до многих тысяч пар оснований. Как же на таких расчлененных генах синтезируются единые молекулы мРНК, по которым далее идет синтез единых молекул белков? Оказалось, что с участка ДНК, по которому разбросаны куски данного гена, включая и промежутки, снимается копия в виде очень длинной молекулы РНК. Эта молекула-предшественник или, как говорят, про-мРНК. Из про-мРНК сложным путем нарезания и последующего сшивания (этот процесс иногда называют «созреванием») получаются «зрелые» молекулы мРНК, которые уже могут выполнять свои прямые обязанности. Таким образом, сам факт расчлененности генов заставляет высшие организмы заботиться о «созревании» мРНКовых копий. Отметим, что в зачаточном (или, наоборот, в рудиментарном) виде механизм созревания РНК есть и у бактерий, но там дело ограничивается отрезанием «лишних» концов у молекул.

Как в деталях идет процесс созревания? Конечно, существуют специальные ферменты, разрезающие молекулу про-мРНК и сшивающие полученные фрагменты друг с другом. Но что указывает ферменту, как правильно нарезать молекулу и как правильно сшить получившиеся куски мРНК? И как выбрасываются промежуточные участки? Кухня такой рубки-сборки совсем не проста: ведь если фермент просто разрежет мРНК на куски, то эти куски разбегутся в разные стороны из-за броуновского движения – и пойди собери их!

Как удалось установить, в процессе «созревания» или, как его принято называть, сплайсинга мРНК участвуют специальные коротенькие молекулы РНК. Они «склеивают» про-мРНК так, чтобы специальным ферментам было ее удобно нарезать на куски и вновь сшить, выбросив лишнее. С легкой руки Гилберта те участки ДНК, слепок с которых сохраняется в ходе сплайсинга, называют экзонами, а выбрасываемые в ходе сплайсинга участки – интронами.

Какие же преимущества дает высшим организмам такой запутанный механизм производства мРНК? Ведь он не только очень сложен, но и таит в себе возможности очень грубых ошибок?

В самом деле, физико-химические данные свидетельствуют, что пространственная структура РНК не жесткая, она колеблется между различными состояниями, сильно различающимися по тому, какие участки образуют шпильки или другие элементы пространственной структуры. Это значит, что в одном состоянии про-мРНК будет нарезана на куски одним способом, а в другом – иным. Соответственно, разными окажутся выброшенные участки, и «зрелые» молекулы мРНК будут очень сильно отличаться друг от друга. Кроме того, накопление небольшого числа (или даже одной) точечных мутаций в про-мРНК может существенно нарушить соотношение пространственных структур, которые образует эта молекула.

1 ... 23 24 25 ... 76
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Самая главная молекула. От структуры ДНК к биомедицине XXI века - Максим Франк-Каменецкий», после закрытия браузера.

Комментарии и отзывы (0) к книге "Самая главная молекула. От структуры ДНК к биомедицине XXI века - Максим Франк-Каменецкий"