Читать книгу "Гюйгенс. Волновая теория света. В погоне за лучом - Давид Бланко Ласерна"
Шрифт:
Интервал:
Закладка:
Его построение основывалось на так называемом принципе Гюйгенса: каждая частица, попадающая в световой фронт, сама становится фронтом. Проводя аналогию с домино, распространение начинается с падения одной кости, и каждая падающая кость заставляет падать другие, передавая возмущение в виде веера. В трехмерном пространстве столкновения можно увидеть на разрезе окружности:
«...каждая частица вещества, в котором распространяется волна, должна сообщать свое движение не только ближайшей частице, лежащей на проведенной от светящейся точки прямой, но необходимо сообщает его также и всем другим частицам, которые касаются ее и препятствуют ее движению. Таким образом вокруг каждой частицы должна образоваться волна, центром которой она является».
РИС. 7
РИС. 8
Согласно этому принципу, зная фронт возмущения в определенный момент (t1), мы можем точно определить его в любое следующее мгновение (t2). Достаточно взять каждую точку предыдущего фронта (F1) за источник новых, вторичных сферических фронтов, которые постепенно распространяются вперед с радиусом r = v(t2 - t1). Получившийся фронт (F2) будет поверхностью, которая покрывает все сферы одновременно в том состоянии, в котором они находятся в каждый момент времени (см. рисунок 7). В некотором смысле фон из частиц эфира с их столкновениями служит физическим предлогом для использования метода геометрической реконструкции с его набором из линейки и циркуля, который позволяет изобразить распространение возмущения. Физика, разумеется, определяет такие параметры рисунка, как ширина раскрытия циркуля. Вторичные фронты распространяются не в точности так же, как первоначальное возмущение. Маленькие сферы не расширяются внутрь, в направлении источника света О. Каждая точка фронта F1 порождает вторичную волну, направленную только вовне, создавая F2. Волны, идущей внутрь, которая могла бы породить F2, не появляется (см. рисунок 8).
РИС. 9
РИС. 10
Надо уточнить, что этот эффект не накапливается, то есть по мере продвижения фронта его интенсивность не нарастает благодаря росту протяженности. В противном случае каждый раз, зажигая лампочку, мы видели бы, что свет от нее увеличивает свою интенсивность и в результате ослепляет нас. Если фронт появляется и угасает, то мы видим свет на мгновение, а потом он исчезает.
Одним из самых простых случаев, к которому можно применить принцип Гюйгенса, является распространение плоских и сферических волн (см. рисунки 9 и 10). Линии, перпендикулярные фронту волн (лучам в случае со сферами), образуют в геометрической оптике световые лучи. Построение Гюйгенса кажется немного громоздким и не до конца продуманным. Почему бы для определения вида нового фронта просто не провести прямую линию за другой или более широкую окружность на нужном расстоянии, в зависимости от скорости распространения света?
Однако этот принцип помогает построить фронты в менее однозначных ситуациях. Например, он позволяет вывести закон Снелля, определив значения числовой постоянной как коэффициент скоростей света в каждой среде. Возьмем плоскую границу между воздухом и стеклом (см. рисунок 11). Принцип Гюйгенса справедлив для обеих сред, но в воздухе (υα) скорость света больше, чем в стекле (υυ). Гюйгенс предлагает следующее объяснение этого различия:
«Благодаря тому, что несплошное расположение частиц прозрачных тел имеет указанный нами характер, легко видеть, что волны могут продолжаться в эфирной материи, наполняющей промежутки между частицами. Кроме того, можно думать, что продвижение этих волн должно происходить внутри тел более медленно вследствие тех маленьких изворотов пути, которые обусловливают сами частицы».
РИС. 11
Частицы эфира передают возмущение быстрее в разреженном воздухе, где они почти не встречают препятствий, по сравнению с пористым лабиринтом прозрачной материи. Чтобы включить в наше построение разность скоростей (υa и υυ), вторичные сферические волны должны иметь больший радиус в воздухе (ra) по сравнению со стеклом (rυ). Другими словами, раскрытие циркуля в одной среде будет больше по сравнению с другой. Мы можем предположить, что в воздухе ra = υa · t; в то время как в стекле rυ = υυ · t, где υa > υυ, поэтому в одинаковые промежутки времени ra > rυ.
НОВЫЙ ВЗГЛЯД НА ЗАКОН СНЕЛЛЯ
Соотношение между углами α и ß легко вычислить при помощи двух треугольников (см. рисунок 1). Первый соединяет А и D с точкой Е, которая находится на пересечении перпендикуляра, проведенного к фронту в воздухе, ограниченному D. Второй треугольник соединяет А и D с точкой F, которая находится на пересечении перпендикуляра, проведенного от А к фронту в стекле. Получаем:
sin α = 3ra/L, sin ß = 3rv/L
Разделим два синуса:
Sinα /sin ß = ra/rv = (va · t)/(vv · t) = va/vv.
РИС. 1
РИС. 2
Остается рассмотреть, являются ли углы α и ß теми же, что мы проводим в чертежах в рамках геометрической оптики, в которых ориентиром всегда служит вертикальная линия, а не горизонтальная граница. Для этого достаточно вспомнить, что две прямые образуют между собой тот же угол, что и перпендикулярные им. На рисунке 2 угол между прямыми а и b равен тому, что образуют соответствующие им перпендикуляры a и b. Следовательно, угол между прямыми АЕ и AD такой же, как и между их перпендикулярами. Перпендикуляр к АЕ — это луч 1, а перпендикуляр к АD — вертикальная линия.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Гюйгенс. Волновая теория света. В погоне за лучом - Давид Бланко Ласерна», после закрытия браузера.