Читать книгу "Двигатели жизни. Как бактерии сделали наш мир обитаемым - Пол Фальковски"
Шрифт:
Интервал:
Закладка:
В конце 1774 года Пристли нанес визит Антуану Лавуазье, французскому дворянину, химику и откупщику, имевшему в Париже грандиозную лабораторию. За обедом Пристли описал произведенные им эксперименты, скорее всего подогрев свое красноречие изрядным количеством вина. Лавуазье был заинтригован и повторил эксперименты Пристли по получению «дыхательного» воздуха посредством нагревания окиси ртути. Судя по всему, он был третьим человеком в истории, получившим кислород из минерала, однако он применил другой, более своеобразный и радикальный подход.
Лавуазье, обладавший более утонченным пониманием природных явлений, нежели Пристли, подумал, что если что-то может быть создано посредством химической реакции, то при этом что-то должно быть и потеряно. Эта мысль была простой, но глубокой; впоследствии она легла в основу метода, который мы называем количественным химическим анализом. Нельзя сказать, чтобы она положила начало современной химии, однако именно с нее начался такой подход к исследуемому предмету, который позволял тщательно проверять гипотезы. Будучи чрезвычайно богатым, Лавуазье мог себе позволить платить лучшим французским инструментальным мастерам, чтобы они изготавливали для него точнейшую аппаратуру, какая только была доступна в то время. В число этих инструментов входили необычайно точные весы, сделанные со скрупулезным вниманием ко всем деталям, как если бы это было ювелирное изделие. Они могли регистрировать изменения массы до 1/400 000 доли. Такая точность была исключительной для того времени, и Лавуазье пользовался этими весами с немалым успехом. Тщательно взвесив окись ртути до и после нагревания, он смог определить, сколько вещества было потеряно в процессе. Затем он приступил к обратному действию: нагрел металлическую ртуть в присутствии воздуха, чтобы получить окись ртути, которая весила больше, чем изначальный металл, и показал, что воздух в испытательной камере потерял некоторую долю объема. Он повторил этот опыт с фосфором, получив фосфорную кислоту. Лавуазье также показал, что газ, получаемый при нагревании окиси ртути, является одной из составляющих воды и что атмосфера Земли состоит главным образом из азота и этого нового компонента, которому он дал название oxygène – «рождающий кислоту». Лавуазье был интеллектуальным отцом аналитической химии; он продолжал свои опыты и успел открыть еще несколько новых элементов, прежде чем его обезглавили во время Французской революции в возрасте пятидесяти лет за то, что он собирал налоги для короля.
Лавуазье не понимал, как кислород мог появиться в атмосфере. Он мог происходить от нагрева солнечными лучами горных пород, содержащих окись ртути или другие подобные минералы, но это казалось маловероятным, поскольку не было заметно, чтобы горные породы разлагались под воздействием Солнца. Кроме того, если поместить окись ртути под колпак и попросту выставить его на свет, ничего не произойдет: необходимо нагреть минерал до достаточно высокой температуры, чтобы получить из него кислород.
Частично эта загадка разрешилась в 1779 году, когда голландский физик Ян Ингенхауз, работая в Англии в той же лаборатории, в которой пятью годами раньше работал Пристли, заметил, что на зеленых листьях водных растений образуются пузырьки, если они выставлены на солнце, но этого не происходит, если держать их в темноте. И разумеется, когда газ из пузырьков был с немалым трудом собран, в его присутствии тлеющая свеча вспыхнула ярким пламенем. Ингенхауз обнаружил, что растения производят кислород, но ни он, ни Лавуазье не понимали, что этот кислород берется из воды.
В детстве нам всем довелось узнать, что растения производят кислород, которым мы дышим, и большинство из нас продолжают жить, больше об этом не задумываясь. Однако каменная летопись показывает, что наземные растения появились на этой планете всего лишь около 450 млн лет тому назад. Если возраст Земли составляет по меньшей мере 4,55 млрд лет, означает ли это, что до 450-миллионной отметки кислорода на ней не было?
Как я уже рассказывал, у микроорганизмов выработался сложный наномеханизм, позволяющий им расщеплять воду при помощи солнечной энергии, за миллиарды лет до возникновения наземных растений. Однако хотя это и может показаться удивительным, мы до сих пор имеем очень неясное представление о том, когда появился первый микроорганизм, обладающий таким свойством. До нашего времени сохранилась лишь одна прокариотическая группа фотосинтезирующих микроорганизмов, способных производить кислород, – цианобактерии.
Эволюция цианобактерий до сих пор остается загадкой. Все они генетически тесно связаны между собой и являются единственными среди прокариотов производящими зеленый пигмент, хлорофилл а, используемый всеми образующими кислород организмами для расщепления воды. Однако что, наверное, наиболее интересно, так это то, что они являются единственными фотосинтезирующими прокариотами, имеющими два различных типа фотосинтетических реакционных центров. Один из них очень напоминает реакционный центр, найденный у фотосинтезирующих пурпурных несерных бактерий, но последние не способны расщеплять воду при помощи солнечной энергии и, следовательно, не вырабатывают кислород. Они используют световую энергию, чтобы расщеплять газообразный водород на протоны и электроны и впоследствии производить сахара. Другой тип реакционных центров унаследован от фотосинтезирующих зеленых серных бактерий, наподобие тех, которых я изучал в глубинной части верхнего слоя водной толщи Черного моря. Эти организмы также не расщепляют воду и не вырабатывают кислород; они расщепляют сероводород, используя световую энергию. Как пурпурные несерные, так и зеленые серные бактерии чрезвычайно чувствительны к присутствию кислорода – при контакте с этим газом они теряют свои фотосинтетические способности. Представляется, реакционные центры двух этих очень различных организмов каким-то образом сумели соединиться в одном организме. Как это случилось, остается неясным, однако, скорее всего, это стало следствием многократного обмена генами между различными видами микроорганизмов.
Получившаяся в результате химера, где в зарождающуюся цианобактерию оказались генетически встроены два различных типа реакционных центров, подверглась ряду дальнейших эволюционных преобразований. К реакционному центру, полученному от пурпурных бактерий, был добавлен белок, содержащий четверку атомов марганца, – впоследствии эта конструкция превратится в реакционный центр, где будет расщепляться вода. Взятую у бактерий пигментную систему новая клетка со временем модифицировала, чтобы производить хлорофилл, что позволило реакционному центру использовать свет на более высоких энергетических уровнях для расщепления воды. Второй реакционный центр, унаследованный от зеленых серных бактерий, также претерпел изменения, и модифицированный наномеханизм позволил ему функционировать в присутствии кислорода. Явившаяся в результате новая конструкция, составленная из подобранных где попало наномеханизмов, отличается чрезвычайной сложностью: она состоит из более чем 100 белков и других компонентов, разделенных на два реакционных центра, которые работают по очереди.
Давайте снова обратимся к уже использовавшемуся сравнению электронов с пассажирами в метро. В первом реакционном центре свет в конечном счете забирает электроны у водорода в воде и везет их через ряд промежуточных станций. Электроны прибывают ко второму реакционному центру, где их, снова при помощи энергии света, с большим усилием запихивают в набитый битком поезд, который отправляется через другой ряд промежуточных станций, после чего электроны, наконец, достигают пункта своего назначения. Этим пунктом назначения является маленькая древняя молекула, называемая ферредоксин, состоящая из комплекса железа и серы, идентичного тому, что содержится в минерале пирите, или «золоте дураков». Здесь с помощью специального фермента электрон, наконец, встречает своего партнера – протон, и они образуют НАДФН. Вспомним, что НАДФН является транспортировщиком водорода, и прикрепленный к НАДФН водород может быть использован для превращения углекислого газа в органическое вещество. Весь этот механизм по преобразованию энергии требует участия около 150 генов. Это наисложнейший механизм такого рода, существующий в природе.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Двигатели жизни. Как бактерии сделали наш мир обитаемым - Пол Фальковски», после закрытия браузера.