Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » Как не ошибаться. Сила математического мышления - Джордан Элленберг

Читать книгу "Как не ошибаться. Сила математического мышления - Джордан Элленберг"

340
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 ... 160
Перейти на страницу:

По всей вероятности, учитель математики ответит так: «Понимаю, сейчас это занятие кажется вам бессмысленным. Но имейте в виду следующее: вы еще не знаете, чем будете заниматься завтра; сегодня вы не находите никакой связи между интегралами и своим будущим, но вы можете выбрать такую профессию, в которой будет чрезвычайно важно уметь быстро и правильно вычислять определенные интегралы вручную».

Вряд ли подобный ответ удовлетворит студентку, поскольку он лживый. Что понимают и преподаватель и ученик. Количество взрослых людей, которым когда-либо пригодится интеграл (1 – 3x + 4x2)–2 dx, или формула косинуса 3θ, или синтетическое деление многочленов, можно сосчитать на нескольких тысячах рук.

Эта ложь не доставляет особого удовольствия и учителю. Мне ли не знать: за многие годы преподавания математики я давал сотням студентов задание вычислять целые списки определенных интегралов.

К счастью, есть и более подходящее объяснение. Я постараюсь его для вас сформулировать.

«Математика – не просто последовательность вычислений, которые необходимо выполнять механически до тех пор, пока у вас не закончится терпение и выдержка – хотя эта мысль может показаться весьма далекой от того, чему вас учили на курсах, именуемых “математика”. В математике интегралы играют ту же роль, что силовые тренировки и физическая подготовка в футболе. Если вы хотите научиться играть в футбол – а я имею в виду играть по-настоящему, – вам предстоит выполнить множество скучных, однообразных, на первый взгляд бессмысленных упражнений. Используют ли когда-либо эти упражнения профессиональные игроки? На поле никто не поднимает штангу и не бегает зигзагами между конусами. Но все-таки футболисты используют ту силу, скорость, понимание сути игры и гибкость, которую они обрели в процессе выполнения – неделя за неделей – множества утомительных упражнений. Отработка таких упражнений – неотъемлемая часть обучения игре в футбол.

Если вы хотите зарабатывать игрой в футбол на жизнь или даже стать членом университетской команды, вам предстоит провести много скучных выходных на тренировочном поле. Другого пути нет. Но есть и хорошая новость: если интенсивные тренировки вам не под силу, вы все равно сможете играть в футбол – для развлечения, для самого себя. Сделав пас защитнику или забив гол с большого расстояния, вы будете получать такое же удовольствие, как и профессиональный спортсмен. Кроме того, играя в футбол с друзьями, вы почувствуете себя намного здоровее и счастливее, чем если просто сидели бы и смотрели по телевизору игру профессионалов.

Математика представляет собой почти то же самое. Возможно, вы не станете обременять себя профессией, непосредственно связанной с этой наукой. Что вполне нормально, поскольку большинство людей не ставят перед собой такой цели. Тем не менее вы все-таки можете заниматься математикой. По всей вероятности, вы – сами того не зная – уже решаете математические задачи[2]. Математика вплетена в ткань нашего мышления. Кроме того, математика помогает человеку лучше делать свое дело. Знание математики – своего рода рентгеновские очки, позволяющие увидеть структуру мира, скрытую под беспорядочной, хаотичной поверхностью. Математика – это наука о том, как не совершать ошибок, а математические формы и методы выковывались на протяжении многих столетий упорного труда и дискуссий. Владение математическим инструментарием позволит вам составить более глубокое, достоверное и осмысленное представление об окружающем мире. Все, что вам нужно, – это тренер или по крайней мере книга, которая научит вас правилам игры и некоторым базовым тактическим приемам. Я буду вашим тренером. Я научу вас этому».

К сожалению, на занятиях из-за нехватки времени мне не часто приходится произносить подобные речи. Напротив, в книге всегда найдется место и для более пространных рассуждений. Надеюсь, мне удастся оправдать сделанные выше серьезные заявления, показав вам, что математика позволяет решать многие из задач – будь то политика, медицина, коммерция или богословие, – над которыми мы размышляем каждый день.

Однако даже если я и произнес бы свою вдохновляющую речь перед студенткой, у нее – если она действительно проницательна – все равно останутся сомнения.

«Профессор, – сказала бы она, – все это звучит неплохо, но несколько абстрактно. Вы говорите, будто математические знания позволяют нам делать правильные шаги там, где в противном случае мsы обязательно оступились бы. Но что именно вы имеете в виду? Дайте конкретный пример».

И тогда я рассказал бы студентке историю Абрахама Вальда, а также вспомнил бы о его решении проблемы отсутствующих пулевых отверстий.

Рассказ об Абрахаме Вальде и отсутствующих пробоинах

Подобно многим историям времен Второй мировой войны, мой рассказ начинается с того, как нацисты изгнали евреев из Европы, и заканчивается тем, что они горько об этом пожалели. Абрахам Вальд родился в 1902 году в городе, который тогда назывался Клаузенбург и принадлежал Австро-Венгерской империи{1}. К тому времени, когда Вальд достиг подросткового возраста, Первая мировая война уже вошла в учебники, а его родной город стал румынским городом Клуж. Внук раввина и сын булочника, Вальд проявлял математические способности с самых ранних лет. Одаренность мальчика не осталась без внимания, и он получил возможность изучать математику в Венском университете, где увлекся предметами настолько абстрактными, что даже по меркам чистой математики они были слишком трудны для понимания: теорией множеств и метрическими пространствами.

Вальд закончил обучение в середине 30-х годов ХХ столетия, когда Австрия уже находилась в состоянии глубокого экономического спада. Как у иностранца у Вальда не было шансов получить в Вене должность профессора, но его спасло предложение, поступившее от Оскара Моргенштерна. Впоследствии Моргенштерн иммигрирует в Соединенные Штаты Америки и будет участвовать в создании теории игр, а в 1933 году он, будучи директором Австрийского института экономических исследований, нанял Вальда для выполнения элементарных математических задач. Согласие на эту работу – хотя ему и назначили совсем небольшую оплату – оказалось весьма умным решением. В дальнейшем благодаря полученному опыту в области экономики Вальд получил предложение войти в комиссию Коулза – экономической организации, которая в то время находилась в Колорадо-Спрингс. Несмотря на ухудшающуюся политическую ситуацию, Вальд не хотел делать шаг, который навсегда разлучил бы его с чистой математикой. Но затем нацисты захватили Австрию, что помогло Вальду сделать окончательный выбор. После нескольких месяцев работы в Колорадо он получил предложение занять профессорскую должность в Колумбийском университете. Вальд снова упаковал вещи и переехал в Нью-Йорк.

1 2 3 ... 160
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Как не ошибаться. Сила математического мышления - Джордан Элленберг», после закрытия браузера.

Комментарии и отзывы (0) к книге "Как не ошибаться. Сила математического мышления - Джордан Элленберг"