Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » Вопрос жизни. Энергия, эволюция и происхождение сложности - Лейн Николас

Читать книгу "Вопрос жизни. Энергия, эволюция и происхождение сложности - Лейн Николас"

204
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 ... 99
Перейти на страницу:

Как бактерии связаны со сложными формами жизни? Корни этого вопроса уходят в 70-е годы XVII века, когда голландец Антони ван Левенгук открыл микроорганизмы. В резвящихся “зверушек” сначала мало кто верил, но вскоре существование микробов подтвердил не менее изобретательный Роберт Гук. Левенгук в знаменитой работе 1677 года описал бактерий, которые были “необыкновенно малы – настолько малы, что, по-видимому, и целая сотня их, выстроенная в ряд, не превысила бы песчинки. Чтобы сравняться с ней, потребовался бы по крайней мере десяток тысяч этих существ”. Многие сомневались, что Левенгук увидел бактерий при помощи своих примитивных микроскопов, хотя сейчас это считается бесспорным фактом. Левенгук находил бактерий везде: и в дождевой воде, и в море, даже на собственных зубах. Он интуитивно провел границу между “зверушками” и “гигантскими чудищами” – микроскопическими протистами – с их “лапками” (ресничками) и занятными повадками. Он даже заметил, что самые большие клетки состоят из множества “глобул” (шариков), которые он сравнивал по размеру с бактериями (хоть и не использовал этот термин). Среди глобул Левенгук почти наверняка увидел клеточное ядро: хранилище генов всех сложных клеток. После этого на несколько столетий все утихло. Знаменитый систематик Карл Линней спустя полвека после Левенгука просто отнес все микроорганизмы к роду Chaos (бесформенные) внутри типа Vermes (черви). Эрнст Геккель, великий немецкий эволюционист, современник Дарвина, вновь отделил бактерии от остальных микроорганизмов. И все же в идейном плане значительных шагов не было сделано до середины XX столетия.

Проблема систематики бактерий встала особенно остро при попытке объединить их в группы по биохимическим признакам. Бактерии из-за невероятно разнообразных метаболических путей кажутся совершенно не поддающимися такой классификации. Они могут расти почти на чем угодно: на цементе, аккумуляторной кислоте, бензине. Но если все эти сильно различающиеся способы существования не имеют ничего общего, как мы можем классифицировать бактерий? И как разобраться с ними без классификации? Подобно тому, как периодический закон принес в химию логику и связность, биохимия упорядочила науку об эволюции клеток. Голландец Алберт Клюйвер показал, что, несмотря на исключительное разнообразие живых организмов, их жизнедеятельность поддерживают очень схожие биохимические процессы. Столь различные процессы, как дыхание, брожение и фотосинтез имеют единую основу, а это свидетельствует о том, что все живое восходит к общему предку. Что справедливо для бактерий, справедливо и для слонов, утверждал Клюйвер. С точки зрения биохимии, барьер между бактериями и сложными клетками незначителен. Биохимия бактерий несравнимо многообразнее, но ключевые процессы поддержания жизнедеятельности у них по существу такие же, как у сложных клеток. Возможно, ближе всего к пониманию различия между бактериями и сложными клетками подошли ученик Клюйвера Корнелис ван Ниль и Роджер Станьер. Бактерия, утверждали они, неделима, как и атомы, и представляет собой минимальную функциональную единицу. Многие бактерии, как и мы, способны дышать кислородом, но бактериальная клетка вовлекается в этот процесс целиком: в ней нет предназначенных для дыхания компартментов, как в наших клетках. Бактерии делятся пополам, когда вырастают, но функционально они неделимы.

Так началась первая из трех биологических революций второй половины XX века, не оставивших камня на камне от прежних представлений о живом. Первая революция началась в “лето любви” 1967 года, а разожгла ее Линн Маргулис. “Сложные клетки появились не в ходе «классического» естественного отбора, – утверждала Маргулис. – Они зародились в оргии взаимного ублажения, когда клетки были так близки, что даже проникали друг в друга”. Долговременное сотрудничество нескольких видов называется симбиозом и напоминает обмен товарами и услугами. В случае микроорганизмов товары – это метаболические субстраты, дающие энергию для поддержания жизни клеток. Маргулис говорила об эндосимбиозе – разновидности симбиоза, при котором поддерживающие друг друга клетки находятся внутри клетки хозяина, почти как магазины под крышей одного торгового центра. Догадки на этот счет появились еще в начале XX века, а их развитие поразительно напоминает судьбу теории тектоники литосферных плит. Очертания Африки и Южной Америки выглядят так, будто эти материки составляли единое целое, а после разошлись, но это незамысловатое наблюдение долго казалось нелепым. Точно так же многим приходило в голову, что некоторые структуры сложных клеток подозрительно напоминают бактерии, даже будто бы самостоятельно растут и делятся. Может, это и есть бактерии?

Подобно теории тектоники литосферных плит, эти идеи опередили свое время и не получили развития до 60-х годов, начала эры молекулярной биологии, когда подтверждение этих идей стало возможным. Это и сделала Линн Маргулис. Она исследовала две специализированные клеточные структуры: митохондрии и хлоропласты. В митохондриях осуществляется клеточное дыхание – сжигание пищи в кислороде с выделением энергии, которая идет на поддержание жизненных процессов клетки. Хлоропласты – особые приспособления фотосинтезирующих растений, преобразующие энергию солнечного света в энергию химических связей. Эти органеллы (греч. “миниатюрные органы”) сохранили собственные геномы, кодирующие несколько десятков генов, задействованных в механизмах дыхания и фотосинтеза. Как только были получены точные последовательности этих генов, стало ясно, что митохондрии и хлоропласты произошли от бактерий. Но обратите внимание, что я говорю “произошли от бактерий”: сейчас это уже не бактерии, они утратили автономность, так как большая часть их жизненно важных генов (минимум 1,5 тыс.) находится в ядре – генетическом “центре управления” клетки.

Маргулис оказалась права насчет происхождения митохондрий и хлоропластов: к 80-м годам в этом почти никто уже не сомневался. Но другие ее идеи оказались чересчур смелыми. Она была убеждена, что сложная клетка, которую сейчас называют эукариотической (греч. “с настоящим ядром”), представляет собой эндосимбиотическую мозаику. Маргулис считала, что и многие другие компоненты эукариотической клетки произошли от бактерий. Так, реснички (“лапки”, обнаруженные Левенгуком), по мысли Маргулис, произошли от спирохет. Таким образом, эукариотическая клетка произошла в результате целой серии слияний, что в дальнейшем оформилось в виде теории серийных эндосимбиозов. Не только отдельные клетки, но и весь мир является результатом совместной жизнедеятельности колоссального числа бактерий: так гласит гипотеза Геи Линн Маргулис и Джеймса Лавлока. Но если гипотеза Геи (очищенная от телеологии Лавлока) сейчас переживает возрождение, превратившись в более строгие “системные исследования Земли”, то идея сложной “эукариотической” клетки как бактериального ансамбля не получила большой поддержки. Все-таки большинство клеточных структур не похоже на потомков бактерий, и не найдено никаких генетических признаков, которые бы это подтверждали. Конечно, в чем-то Маргулис была права, но во многом и заблуждалась. Маргулис скончалась от инсульта в 2011 году. Она производила довольно противоречивое впечатление пренебрежением к дарвиновской гипотезе отбора, верой в конспирологию и воинственным феминизмом. Для одних она остается примером героини-феминистки в науке, другие считают ее чудачкой. Увы, большая часть ее наследия весьма далека от реальной науки.

1 2 3 ... 99
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Вопрос жизни. Энергия, эволюция и происхождение сложности - Лейн Николас», после закрытия браузера.

Комментарии и отзывы (0) к книге "Вопрос жизни. Энергия, эволюция и происхождение сложности - Лейн Николас"