Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » Вселенная Стивена Хокинга - Стивен Хокинг

Читать книгу "Вселенная Стивена Хокинга - Стивен Хокинг"

358
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 18 19 20 ... 82
Перейти на страницу:

Частицы-носители взаимодействий можно подразделить на четыре категории в зависимости от интенсивности взаимодействия, которое они переносят, и от вида частиц, с которыми они взаимодействуют. Это деление условное и приводится только для удобства построения частных теорий; при этом оно может не отражать объективной реальности. Большинство физиков надеются, что когда-нибудь удастся построить единую теорию, которая объяснит все виды сил как разные аспекты единой силы. И многие считают это главной задачей современной физики. В последнее время предпринимались успешные попытки объединения трех из четырех видов взаимодействий, и я расскажу о них в этой главе. А вопрос об интеграции четвертого вида взаимодействия – гравитационного – отложим на потом.

Первым делом поговорим о силе тяготения. Это универсальная сила – в том смысле, что любая частица «ощущает» ее воздействие, а восприимчивость к ней зависит от массы или энергии частицы. Тяготение, или гравитация, – самая слабая из всех сил, причем она значительно слабее остальных. Она настолько слаба, что мы бы вообще не замечали ее, если бы не две особенности: во-первых, это дальнодействующая сила, а во-вторых, она всегда работает как сила притяжения. Это значит, что очень слабые гравитационные силы, действующие между частицами в составе двух больших тел, таких, например, как Земля и Солнце, складываются, в результате чего возникает весьма внушительная сила. Остальные три типа сил – либо короткодействующие, либо бывают иногда притягивающими, а иногда отталкивающими, стремясь компенсировать друг друга. При квантовомеханическом взгляде на гравитационное поле, взаимодействие между двумя частицами вещества осуществляется с помощью частиц со спином 2, называемых гравитонами. Эти частицы не имеют собственной массы, и поэтому переносимая ими сила является дальнодействующей. Гравитационное взаимодействие между Солнцем и Землей рассматривается как результат обмена гравитонами между частицами, составляющими эти два тела. Хотя участвуют в обмене виртуальные частицы, они порождают измеримый эффект, заставляя Землю обращаться вокруг Солнца! Реальные гравитоны образуют то, что классические физики назвали бы гравитационными волнами. Они чрезвычайно слабы – их так трудно обнаружить, что никому до сих пор это не удалось[14].

Обратимся теперь к электромагнитной силе, которая действует на электрически заряженные частицы, такие как электроны и кварки, но не действует на нейтральные частицы вроде гравитонов. Она куда сильнее гравитации: сила электромагнитного взаимодействия двух электронов примерно в миллион миллионов миллионов миллионов миллионов миллионов миллионов (единица с сорока двумя нулями) раз больше силы гравитационного взаимодействия этих частиц. Но электрические заряды бывают двух видов – положительные и отрицательные. При этом два положительных – так же, как и два отрицательных – заряда отталкиваются, а положительный и отрицательный заряды притягиваются друг к другу. В крупном теле вроде Земли или Солнца количество положительных зарядов примерно равно количеству отрицательных; в результате силы отталкивания и притяжения между отдельными частицами взаимно почти уравновешиваются и суммарная электромагнитная сила оказывается очень малой. Но на малых – атомных и молекулярных – масштабах электромагнитные силы преобладают. Сила электромагнитного притяжения между отрицательно заряженными электронами и положительно заряженными протонами атомного ядра удерживает электроны на орбитах вокруг атомного ядра, совсем как сила гравитационного притяжения удерживает Землю на орбите вокруг Солнца. Сила электромагнитного притяжения представляется как результат обмена большим количеством не имеющих массы частиц со спином 1 – фотонов. Как и в предыдущем случае, участвующие во взаимодействии фотоны являются виртуальными частицами. Но переход электрона с одной допустимой орбиты на другую, расположенную ближе к ядру, сопровождается выделением энергии и излучением реального фотона, который можно наблюдать человеческим глазом как видимый свет – если длина его волны попадает в соответствующий диапазон, – или зарегистрировать другим фотодетектором, например фотопленкой. Точно так же при столкновении реального фотона с атомом электрон, движущийся по расположенной вблизи ядра орбите, может оказаться выбитым на более далекую орбиту. Электрон использует энергию фотона, и поэтому сам фотон поглощается.

Третья категория сил называется слабым ядерным взаимодействием, которое отвечает за радиоактивный распад атомных ядер и действует на все частицы вещества со спином 1/2, но не действует на частицы со спином 0, 1 или 2, такие как фотоны и гравитоны. Механизм слабого ядерного взаимодействия оставался не в полной мере понятным до 1967 года, когда Абдус Салам из Имперского колледжа Лондона и Стивен Вайнберг из Гарвардского университета разработали теорию, объединившую слабое и электромагнитное взаимодействия – как за сто лет до того Максвелл объединил электричество и магнетизм. Салам и Вайнберг предположили, что кроме фотонов имеются еще и другие частицы со спином 1 – так называемые массивные векторные бозоны, – которые служат носителями слабого взаимодействия. Эти частицы обозначаются как W+ (W-плюс), W- (W-минус) и Z0 (Z-ноль), каждая имеет массу около 100 ГэВ (ГэВ – гигаэлектронвольт, или одна тысяча миллионов электрон-вольт). Теория Вайнберга – Салама обладает свойством спонтанного нарушения симметрии. Это значит, что целый ряд частиц, которые кажутся совершенно разными при низких энергиях, фактически являются одним и тем же видом частиц, но находятся в разных состояниях. При высоких энергиях все эти частицы ведут себя одинаково. Это можно сравнить с поведением шарика при игре в рулетку. При высоких энергиях (пока колесо рулетки крутится быстро) шарик ведет себя однообразно – просто катится по кругу. Но по мере замедления колеса энергия шарика уменьшается, и в какой-то момент он попадает в одно из тридцати семи углублений на колесе. Другими словами, при низких энергиях шарик может пребывать в одном из 37 различных состояний. Если по какой-то причине мы наблюдаем шарик только при низких энергиях, то создается впечатление, что мы имеем дело с 37 типами шариков!

В теории Вайнберга – Салама, при энергиях куда выше 100 ГэВ, три новые частицы и фотон ведут себя одинаково. Но при более низких энергиях, с которыми мы имеем дело в обычных ситуациях, симметрия между частицами нарушается. W+-, W-– и Z0-частицы приобретают большие массы, и соответствующие им силы становятся очень короткодействующими. Когда Салам и Вайнберг предложили свою теорию, мало кто поверил им, а мощность ускорителей частиц на тот момент была недостаточной и не позволяла достичь энергий в 100 ГэВ, необходимых для порождения реальных бозонов W+, W- и Z0. Однако в последующие десять лет оказалось, что другие предсказания теории на низких энергиях настолько хорошо согласуются с экспериментальными данными, что в 1979 году Саламу, Вайнбергу и Шелдону Глэшоу, еще одному ученому из Гарвардского университета, создавшему аналогичную общую теоретическую основу для электромагнитного и слабого ядерного взаимодействий, была присуждена Нобелевская премия по физике. Нобелевскому комитету не пришлось краснеть за возможную ошибку, и это стало окончательно ясно в 1983 году. Тогда в Европейском центре ядерных исследований (фр. Conseil Européen pour la Recherche Nucléaire (CERN); рус. ЦЕРН) были открыты три массивных партнера фотона с правильно предсказанными массами и другими свойствами. Карло Руббиа, руководитель совершившей открытие группы из нескольких сотен физиков, в 1984 году был удостоен Нобелевской премии – совместно с Симоном ван дер Меером, инженером ЦЕРНа, разработавшим систему хранения антивещества, использованную в экспериментах. (В наше время добиться признания в экспериментальной физике очень нелегко, для этого нужно быть лучшим из лучших!)

1 ... 18 19 20 ... 82
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Вселенная Стивена Хокинга - Стивен Хокинг», после закрытия браузера.

Комментарии и отзывы (0) к книге "Вселенная Стивена Хокинга - Стивен Хокинг"