Читать книгу "Первый год жизни решает все! 365 секретов правильного развития. Этот удивительный младенец - Надежда Андреева"
Шрифт:
Интервал:
Закладка:
Таким образом, после рождения ребенок остается один на один с новыми внешними условиями, которые вызывают нарушение ряда стабильно функционирующих во внутриутробном периоде жизненно важных систем (деятельность сердечно-сосудистой системы, дыхание и пр.), а также существенные изменения в работе мозга. Мозгу новорожденного необходимо адаптироваться к новой среде, новой обстановке.
Сразу после своего появления на свет новорожденный проходит первый в своей жизни тест, с помощью которого врачи определяют степень его физического и неврологического здоровья. Это делается с помощью специальной шкалы Апгар (по имени автора этого теста – Вирджинии Апгар). Эта шкала (см. табл. 2) включает в себя показатели сердечного ритма, дыхания, мышечного тонуса, цвета кожи и рефлекторной возбудимости, которые оцениваются по балльной системе (максимальное число баллов – 10). Чем выше суммарный балл, тем лучше состояние новорожденного. Тест повторяют через пять минут, чтобы отследить динамику состояния новорожденного. Если ребенок набрал 7 и более баллов, то все в порядке, он находится в хорошем физическом состоянии, если 4 и меньше – ребенок нуждается в срочной медицинской помощи.
Таблица 2.
Диагностика функционального состояния новорожденного по шкале Апгар
Таким образом, эта шкала позволяет быстро оценить тяжелые физические нарушения или неврологические отклонения, которые требуют срочного вмешательства. Вместе с тем, для того чтобы более тонко оценить неврологическое благополучие ребенка, существует также шкала оценки поведения новорожденного, которую применяют спустя несколько дней после рождения. В этой шкале оценивают степень проявления 20 врожденных рефлексов, изменение состояния ребенка, реакцию на утешение и другие социальные стимулы.
Если, например, ребенок сильно заторможен и соответственно имеет низкий показатель по шкале поведения новорожденных, то это может означать повреждения мозга или наличие иных неврологических проблем. Если же у ребенка хорошие рефлексы, но он вяло отвечает на социальные стимулы или проявляет на них негативную реакцию, то, возможно, в будущем он не получит адекватной игровой стимуляции и внимания, в результате чего не будет создано платформы для установления тесной эмоциональной связи между малышом и его родителями.
После рождения ребенок остается один на один с новыми внешними условиями, которые вызывают нарушение ряда стабильно функционирующих во внутриутробном периоде жизненно важных систем, а также существенные изменения в работе мозга. Мозгу новорожденного необходимо адаптироваться к новой среде, новой обстановке.
Как же реагирует мозг ребенка на новые условия существования организма, как адаптируется тончайшая мозговая ткань к возросшим информационным нагрузкам?
Все воздействия, с которыми сталкивается организм после рождения, побуждают мозг к новому «эволюционному броску» – к созреванию и подключению тех межнейронных и тех межсистемных связей, которые наиболее отвечают тем условиям внешней и внутренней среды, в которых оказался ребенок после рождения.
Именно эта «подготовка» мозга к конкретным условиям жизни и является залогом оптимальной адаптации к ним, а в дальнейшем – способности активно влиять на них.
Клеточным субстратом адаптации мозга является запуск и развитие дендритного ветвления, формирование новых сетей межнейрональных связей, в которых как в зеркале отражается окружающий ребенка мир. Точнее, именно взаимодействие со средой и «строит» сети нейронов, на базе которых в дальнейшем будут формироваться функциональные системы мозга.
Мы всю жизнь пользуемся мозгом, но подчас почти ничего не знаем о нем. А ведь человеческий мозг – это, может быть, самая сложная из живых структур во Вселенной. Если вы сомневаетесь в этом, представьте на минуту, что ваш мозг забит миллиардами нервных клеток, каждая из которых – это как бы передающее устройство, соединенное многими милями живых проводов с тысячами определенных слушателей. Мы называем весь этот комплекс структур нервной системой.
Рис. 5. Строение нейрона
Вы знаете, что элементарной единицей нервной ткани является нервная клетка – нейрон (рис. 5). Она внешне ничем не отличается от любой клетки нашего организма, пожалуй, только лишь размером (его величина – 5 – 30 микрон). Нейрон состоит из тела и отростков. Тело нейрона может быть различной формы: овальной, звездчатой, многоугольной. Нейрон имеет одно ядро, располагающееся, как правило, в центре клетки – в нем синтезируются нуклеиновые кислоты и белки, содержится ДНК (дезоксирибонуклеиновая кислота), которая является носителем нашей генетической информации, своего рода магнитной лентой с записью всех наших наследственных программ.
Как правило, большинство тел нейронов сосредоточено в пределах головного и спинного мозга, которые в совокупности носят название центральной нервной системы. Однако тела нервных клеток могут лежать и за пределами центральной нервной системы, вблизи внутренних органов или в их стенках, и здесь они образуют нервные узлы, или нервные ганглии.
Нейрон выполняет целый ряд важнейших функций. Он способен принимать, обрабатывать и передавать информацию от других нейронов в форме электрических импульсов или специфических химических сигналов, хранить эту информацию неограниченно долгое время и воспроизводить ее при соответствующих условиях.
Одним словом, каждый нейрон является своеобразной вычислительной машиной, очень маленькой, но имеющей колоссальный объем памяти (по приблизительным подсчетам, более 10 миллиардов бит), и таких нейронов-компьютеров в нашем мозге более 50 миллиардов.
Прием и передача информации осуществляется за счет наличия у нейрона особых отростков. Большинство нейронов имеют отростки двух видов. Короткие, толстые, сильно ветвящиеся вблизи тела нейрона – это дендриты (от греч. dendron – дерево), они названы так за древовидную форму («дендритное дерево»). Именно дендриты воспринимают приходящие к нейрону сигналы и проводят их к телу нейрона.
Длинный и тонкий отросток, отходящий от тела нейрона – это аксон, его длина порой достигает 1,5 м, по нему сигналы, генерируемые данной клеткой, передаются другим клеткам, в другие части мозга или другим структурам тела. Аксоны одних нейронов остаются внутри центральной нервной системы (обеспечивая передачу информации внутри мозговых структур), а аксоны других собираются в пучки (их-то мы и называем нервами) и выходят за пределы центральной нервной системы, пронизывая большинство органов и тем самым осуществляя регуляцию функций нашего организма – эти нервные образования принято называть периферической нервной системой.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Первый год жизни решает все! 365 секретов правильного развития. Этот удивительный младенец - Надежда Андреева», после закрытия браузера.