Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » Величайшие математические задачи - Йен Стюарт

Читать книгу "Величайшие математические задачи - Йен Стюарт"

274
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 16 17 18 ... 100
Перейти на страницу:

Греки не смогли решить задачу квадратуры круга при помощи линейки и циркуля, им пришлось удовлетвориться другими методами. Один из них воспользовался для этого кривой, получившей название квадратрисы. Судя по всему, позднейшие комментаторы сильно преувеличили значение, которое греческие геометры придавали тому, что всякое построение должно делаться только при помощи линейки и циркуля. По сути, мы даже не можем сказать наверняка, действительно ли греки считали квадратуру круга такой важной задачей. К XIX в., однако, эта проблема приобрела поистине вселенские масштабы. Математика, не способная ответить на такой простой и понятный вопрос, — все равно что повар, не способный сварить яйцо вкрутую.


Формулировка задачи — квадратура круга — звучит очень по-геометрически. Так и есть, это действительно геометрическая задача. А вот решение ее, как оказалось, лежит в области вовсе не геометрии, а алгебры. Дело в том, что решение великих задач часто основывается на выявлении неожиданных связей между разными, на первый взгляд, разделами математики. Связь геометрии и алгебры сама по себе не является чем-то беспрецедентным, но тот факт, что она имеет какое-то отношение к квадратуре круга, был замечен далеко не сразу. А потом, когда связь уже была установлена, возникли чисто технические сложности, и для их разрешения потребовалось привлечь еще один раздел математики — математический анализ. По иронии судьбы первый шаг к прорыву был сделан в четвертой области математики — в теории чисел. В результате была решена геометрическая задача, в решаемость которой греки не поверили бы даже в самых смелых своих мечтах и о которой, насколько нам известно, никогда не думали: задача о построении при помощи циркуля и линейки правильного многоугольника с 17 сторонами.

Звучит дико, особенно если добавить, что для правильных многоугольников с 7, 9, 11, 13 или 14 сторонами ничего подобного не существует, зато многоугольник с 3, 4, 5, 6, 8, 10 и 12 сторонами построить можно. Однако в данном случае за безумием скрывается система, причем такая, что ее выявление заметно обогатило математику.

Начнем с начала: что такое правильный многоугольник? Многоугольник вообще — это фигура, ограниченная прямыми линиями. Многоугольник называется правильным, если все отрезки прямых имеют одинаковую длину и пересекаются под одинаковыми углами. Самый известный пример — квадрат: все четыре его стороны имеют одинаковую длину, а все четыре угла являются прямыми. Существуют и другие фигуры — с четырьмя равными сторонами или с четырьмя равными углами: это, соответственно, ромб и прямоугольник. Только квадрат обладает обоими свойствами одновременно. Правильный трехсторонний многоугольник — это равносторонний треугольник; существуют также правильный пятиугольник, правильный шестиугольник и т. д. (рис. 4). Евклид приводит методы построения при помощи циркуля и линейки правильных многоугольников с 3, 4 и 5 сторонами. Кроме того, греки умели последовательно удваивать число сторон, выстраивая многоугольники с 6, 8, 10, 12, 16, 20 и более сторонами. Объединив методы построения правильных многоугольников с 3 и 5 сторонами, они получили правильный 15-угольник. Но на этом продвижение остановилось, и далее, на протяжении 2000 лет, на этом направлении ничего не менялось. Никто не думал, что в этом списке могут появиться многоугольники с еще каким-то числом сторон. Никто даже не задавался этим вопросом: всем казалось, что ничего больше сделать не удастся.



Понадобилось вмешательство одного из величайших математиков всех времен, чтобы обдумать немыслимое, задаться вопросами, задавать которые бесполезно, и получить поистине поразительный ответ. Имя этого математика — Карл Гаусс.

Родился Гаусс в бедной семье в городе Брауншвейге в Германии. Его мать Доротея была неграмотной и не смогла даже записать дату рождения ребенка. Однако она помнила, что было это в 1777 г., за восемь дней до праздника Вознесения. Позже Гаусс сам вычислил точную дату своего рождения при помощи разработанной им формулы расчета дат Пасхи. Отец ученого Гебхард происходил из крестьянской семьи, но зарабатывал на жизнь разной работой: копал канавы, был садовником, уличным мясником, счетоводом похоронной конторы. А их сын оказался вундеркиндом: рассказывали, что уже в трехлетнем возрасте он исправлял отцовские ошибки в арифметике. Его способности, распространявшиеся помимо математики и на языки, побудили герцога Брауншвейгского оплатить обучение мальчика в Брауншвейгском университете. Будучи студентом, Гаусс самостоятельно открыл для себя несколько важных математических теорем, доказанных знаменитыми учеными, такими как Эйлер. Однако его теорема о правильном 17-угольнике грянула как гром среди ясного неба.

К тому времени прошло уже 140 лет с тех пор, как была установлена тесная связь между геометрией и алгеброй. В приложении к «Рассуждению о методе…» Рене Декарт формализовал идею, давно витавшую в воздухе: представление о системе координат. По существу, он взял евклидову девственно чистую плоскость — пустой лист бумаги — и превратил его в лист, расчерченный на квадраты (инженеры и ученые называют такую бумагу миллиметровкой). Для начала нарисуйте на бумаге две прямые линии, горизонтальную и вертикальную. Эти линии называются осями координат. Теперь можно определить положение любой точки на плоскости, задавшись вопросом: как далеко лежит эта точка в направлении вдоль горизонтальной оси и как далеко — вдоль вертикальной (см. рис. 5 слева). Эти два числа — а они могут быть как положительными, так и отрицательными, — дают исчерпывающее описание точки и называются ее координатами.



Все геометрические свойства точек, прямых, окружностей и т. д. можно перевести в алгебраические утверждения, связанные с соответствующими координатами. Очень трудно осмысленно говорить об этих связях без использования алгебры — точно так же, как трудно говорить о футболе без использования слова «гол». Поэтому на следующих страницах мне придется привести несколько формул. Они нужны для того, чтобы показать: у главных действующих лиц этой драмы есть имена, и отношения между ними прозрачны. Согласитесь, «Ромео» — это гораздо понятнее, чем «сын итальянского патриция, полюбивший красавицу-дочь заклятого врага своего отца». Наш Ромео будет носить прозаическое имя x, а его Джульетту будут звать y.

В качестве примера того, как геометрия превращается в алгебру, рис. 5 (справа) показывает, как найти уравнение окружности единичного радиуса с центром в начале координат, где пересекаются наши две оси. Отмеченная точка имеет координаты (x, y), так что у прямоугольного треугольника на рисунке длина горизонтальной стороны равна x, а вертикальной — y. Самая длинная сторона треугольника представляет собой радиус окружности и, соответственно, равняется единице. Теорема Пифагора гласит, что сумма квадратов двух координат равняется 1. В символьном виде это звучит так: точка с координатами x и y лежит на окружности тогда и только тогда, когда ее координаты удовлетворяют условию x² + y² = 1. Символьная характеристика окружности получилась краткой и точной; она наглядно показывает, что речь в данном случае действительно идет об алгебре. И наоборот, любая алгебраическая характеристика пары чисел, любое уравнение с участием x и y можно интерпретировать как геометрическое утверждение о точках, прямых, окружностях или более сложных кривых{8}.

1 ... 16 17 18 ... 100
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Величайшие математические задачи - Йен Стюарт», после закрытия браузера.

Комментарии и отзывы (0) к книге "Величайшие математические задачи - Йен Стюарт"