Читать книгу "Путеводитель по лжи. Критическое мышление в эпоху постправды - Дэниел Левитин"
Шрифт:
Интервал:
Закладка:
На самом деле в материалах New York Times можно найти кое-какую информацию по этому вопросу: «Чиновники, отвечающие за государственные водные ресурсы, запретили сравнивать потребление воды на душу населения в разных районах. По их словам, они ожидают, что в более состоятельных районах с большими земельными участками потребление будет выше».
Проблема со статьей заключается в том, что в ней фреймят данные, чтобы те выглядели так, словно жители Ранчо-Санта-Фе используют воды больше, чем им положено. Но данные, которые приводит газета, — как и в случае с переработкой мусора в Лос-Анджелесе, описанном выше, — не говорят об этом ни слова.
Указание пропорций, а не фактических цифр часто помогает построить верный фрейм. Представим, что вы работаете в компании, занимающейся продажами потоковых конденсаторов, и отвечаете за реализацию товара в Северо-Западном регионе. Ваши продажи сильно увеличились, но все равно еще недотягивают до результатов вашего соперника Джека, отвечающего за Юго-Западный регион. Вряд ли это справедливо — его территория не только больше географически, на ней живет и больше народу. Бонусы в вашей компании зависят от того, покажете ли вы начальству, что успешны в продажах.
Представьте начальству свой отчет о продажах в зависимости от площади или населения региона, в котором работаете. Иными словами, вместо того чтобы рисовать график продаж потоковых конденсаторов, покажите количество, приходящееся на душу населения в этом регионе или на квадратную милю. В обоих случаях, возможно, вы обойдете своего соперника.
Судя по сообщениям в новостях, 2014 год принес наибольшее количество смертей в результате авиакатастроф: 22 падения самолета и 992 человеческие жертвы. Но сегодня путешествия на самолете стали безопаснее, чем когда-либо[45]. А так как и летают теперь намного чаще, это число, 992 погибших, говорит о значительном уменьшении числа смертей на миллион пассажиров (или миллион миль). На рейсе крупной авиакомпании вероятность погибнуть составляет один на пять миллионов. Гораздо выше риск погибнуть при других обстоятельствах: переходя дорогу или жуя бутерброд (смерть от того, что человек поперхнулся или отравился, вероятнее в тысячу раз). Здесь очень важны базовые показатели сравнения. Эти статистические данные растянуты во времени на целый год — год авиаперелетов, год перекусов бутербродами (в результате чего можно либо поперхнуться, либо отравиться). Поменяв базовый показатель, можно рассматривать каждый отдельный вид деятельности (перелет, жевание) на часовом промежутке времени — и это изменит статистику.
К статистике часто прибегают, когда хотят понять, есть ли разница между двумя вещами: двумя разными удобрениями, лекарствами, манерами преподавания, суммами зарплат (например, сравниваются мужчины и женщины, выполняющие один и тот же вид работ). Сравниваемые показатели могут отличаться друг от друга по-разному. Между ними может быть фактическая разница. На вашу выборку могут влиять мешающие факторы, не имеющие ничего общего с исследуемым вопросом. В ваших измерениях могут быть ошибки. А может и быть случайное отклонение — оно возникает то в одной, то в другой части уравнения, в зависимости от того, когда вы с ним работаете. Задача исследователя — найти стабильные, воспроизводимые разницы, и мы пытаемся отделить их от экспериментальных ошибок.
Будьте, однако, осторожны с тем, каким образом новостные СМИ используют слово «значимый», потому что для статистиков это не означает «заслуживающий внимания». В статистике это слово связано с тем, что данные были получены в результате статистических процедур, например проверки по критерию Стьюдента и критерию хи-квадрат, регрессионного анализа и метода главных компонент (их сотни). Статистический уровень значимости представляет в количественной форме, насколько легко результаты объясняются чистой случайностью. При большом количестве наблюдений даже самые незначительные отклонения бывает сложно объяснить в рамках используемой статистической модели. Не критерии определяют, что заслуживает внимания, а что нет, — тут нужны человек и его оценка.
Чем больше у вас наблюдений в двух группах, тем вероятнее вы найдете между ними разницу. Допустим, мы изучаем ежегодные эксплуатационные расходы на два разных автомобиля, Ford и Toyota, располагая данными о содержание десяти машин каждой марки. Давайте предположим, что средние расходы на Ford на восемь центов в год больше. Возможно, статистически это будет незначительно, и, понятное дело, разница в восемь центов в год не станет учитываться при выборе машины — она слишком мала, чтобы из-за этого еще переживать. Но если посмотреть на содержание 500 тысяч автомобилей, эта разница уже станет статистически значимой. При этом она не будет иметь никакого значения в реальной жизни. Еще один пример: новое средство от головной боли может быть статистически лучше, поскольку быстрее решает проблему, но если всего на 2,5 секунды, то кому какая разница?
Вы входите в свой сад и видите 10-сантиметровый одуванчик. Сегодня вторник. Через пару дней, в четверг, вы снова смотрите на него — его высота 15 сантиметров. Какой была его высота в среду? Наверняка мы не знаем, потому что не замеряли в этот день (в среду вы застряли в пробке, возвращаясь домой из питомника, где купили средство от сорняков). Но вы можете предположить: возможно, в среду высота одуванчика была 12,5 сантиметра. Это чистой воды интерполяция: вы берете два крайних значения и оцениваете величину между ними.
Какого размера будет этот одуванчик через шесть месяцев? Если он вырастает на 2,5 сантиметра в день, то можно сказать, что через полгода (примерно 180 дней) его высота составит 450 сантиметров, или четыре с половиной метра. В данном случае вы прибегли к экстраполяции. Но скажите, видели ли вы когда-нибудь такой большой одуванчик? Вероятно, нет: они ломаются под собственным весом, погибают от других естественных причин, их вытаптывают или обрабатывают средством от сорняков. Интерполяция — не идеальная техника, но если сравнить два этих способа, то она даст более точную оценку. Экстраполяция предполагает больше риска, потому что вы оцениваете величину, выходящую за диапазон наблюденных значений.
Время, необходимое, чтобы кофе в чашке остыл до комнатной температуры, определяется по законам физики (на него влияют многие факторы, например атмосферное давление, форма чашки)[46]. Если изначально температура чашки была 63 °C, со временем она опустится следующим образом:
Время, прошедшее с начала эксперимента, мин. Температура, °C 0 63 1 60 2 57 3 54Каждую минуту ваш кофе теряет три градуса. Если бы вы включили промежуточные члены в ряд известных вам величин — скажем, захотели узнать температуру кофе ровно посредине между двумя замерами, — интерполяция оказалась бы довольно точной. Но если вы будете экстраполировать, есть вероятность получить абсурдный ответ, например что ваш кофе через полчаса замерзнет.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Путеводитель по лжи. Критическое мышление в эпоху постправды - Дэниел Левитин», после закрытия браузера.