Читать книгу "Число, пришедшее с холода. Когда математика становится приключением - Рудольф Ташнер"
Шрифт:
Интервал:
Закладка:
Однако в действительности уже Архимед в III в. до н. э. продвинулся к идее «исчисления». Да, он даже лучше Ньютона или Лейбница понял, как можно точно обосновать новый математический метод. На простом примере расчета, с которым Архимед познакомился, вероятно, во время путешествия в далекую Александрию Египетскую, мы можем понять разницу между не отягощенными основаниями расчетами горячих смельчаков Ньютона и Лейбница и глубокомысленными и содержательными рассуждениями Архимеда.
Наряду с Междуречьем Египет был страной, где возникла одна из первых в истории человечества высокая культура. Подобно многим другим народам на заре времен, египтяне верили во множество богов, определявших судьбы людей и мира. Пантеон египтян был безмерно велик и сложен: согласно одной из многих традиций, Атум был богом солнца, Шу — богом воздуха, Тефнут — богиней влаги, Геб — богом земли, Нут — богиней неба, а божества Исида, Осирис, Сет, Нефтида были правнуками Атума. Гор, сын Исиды и Осириса, являлся наиболее почитаемым из всех египетских богов. Фараон считался воплощением Гора на Земле. Глазами Гора были солнце и луна, причем луну называли уджатом — святым оком Гора.
Сказание гласит, что Сет, брат Осириса, во время борьбы за трон Осириса, вырвал этот глаз у Гора. Тот, мудрый бог луны, покровитель наук и письменности, увидел бесчисленное множество частей, больших и малых, этого глаза, и попытался их воссоединить.
Самый большой фрагмент глаза Гора составлял его половину, второй — четверть уджата. Соединив эти части, Тот исцелил глаз на три четверти. Следующий фрагмент составлял одну восьмую святого ока Гора. Тот добавил и ее к глазу и таким образом восстановил глаз на семь восьмых. Следующая по величине была одна шестнадцатая часть уджата. Тот присоединил ее к восстановленной части, так что исцеленными оказались уже пятнадцать шестнадцатых глаза Гора. Теперь настала очередь одной тридцать второй части. Тот присоединил и ее, получив в результате глаз, восстановленный на тридцать одну тридцать вторых. Следующей частью стал фрагмент, в точности равный одной шестьдесят четвертой доле уджата. Тот присоединил его и получил глаз, восстановленный на шестьдесят три шестьдесят четвертых.
В этой своеобразной истории египтяне открыли дроби
Слово «дробь» оказалось в этом контексте как нельзя более подходящим, ибо речь шла о раздробленном глазе Гора.
Мы не знаем, слышал ли Архимед историю о разбитом глазе и бывал ли он вообще в Египте. Однако, если ему удалось услышать эту чудесную историю, он, вероятно, задал себе вопрос: что будет, если бог Тот не остановится на шестом фрагменте, а продолжит исцеление глаза дальше? Каждый следующий фрагмент был вдвое меньше предыдущего; глаз разбился на бесконечное число осколков. Удалось бы Тоту воссоздать глаз целиком?
Конечно нет, несомненно ответил бы Архимед, ибо, какое терпение ни проявил бы Тот, присоединяя все новые и новые осколки, всегда оставались бы и другие, бесчисленные осколки, которые следовало бы вставить. Но Архимед понимал и другое: чем прилежнее работал бы Тот, тем лучше становилась бы его работа, ибо чего бы не хватало, когда бы он, после тяжких трудов, завершил бы наконец свою работу? Не хватало бы той малой части глаза, которая была бы равна наименьшей доле, которую бы Тот вставил последней. Дефект с каждой новой вставленной частью становился вдвое меньше и со временем стал бы пренебрежимо малым. Если бы Тот вставил первые 64 осколка, то остался бы дефект, в точности равный
то есть дефект был бы меньше одной восемнадцатиквинтиллионной части целого глаза. Как при этом не вспомнить историю о магарадже, мудреце и шахматной доске, на 64 клетки которой надо было уложить рисовые зернышки — на каждую следующую клетку вдвое больше, чем на предыдущую?
Таким образом, мы имеем полное право вложить в уста Архимеда следующий ответ: чем больше терпения проявит Тот в исцелении глаза Гора, тем лучше будет результат его работы; останется лишь очень малый дефект, который сам Гор будет воспринимать как крошечное «слепое пятно», и его Тот, если захочет, сможет сделать еще меньше.
Как в отношении Архимеда, так и Ньютона или Лейбница, мы не знаем, слышали ли они историю о разбитом глазе бога Гора. Но мы можем совершенно точно сказать, что оба открывателя «исчисления» дали бы, в отличие от Архимеда, куда более непринужденный ответ на вопрос о том, удалось бы Тоту довести свою работу до конца и полностью восстановить святое око Гора.
Конечно да, ответили бы и Ньютон, и Лейбниц, ибо они вполне могли себе представить, что Тот — а богам часто удается то, что кажется немыслимым для людей, — мог работать над восстановлением глаза Гора бесконечно долгое время и поэтому вставить в глазницу не шесть первых фрагментов, а бесконечно большое их множество, и тогда он получил бы целый глаз без единого дефекта. В виде формулы это можно записать так:
Чудовищное количество следующих дробей скромно представлено в этой формуле многоточием (…) после последнего знака плюс. Эти точки, по Ньютону и Лейбницу, символизировали бесконечноемножество дробей, каждая из которых была вдвое меньше предыдущей и вдвое больше следующей, и все эти дроби надо было сложить друг с другом. Никто, однако, не сможет осуществить сложение бесконечного множества слагаемых. Это невозможно сделать ни в голове, ни на бумаге карандашом, ни на бухгалтерских счётах, ни даже с помощью самого современного компьютера.
Открывателям «исчисления» все это было, без сомнения, понятно, но они полагали, что, если мы, слабые, несовершенные люди, можем сложить лишь конечное число слагаемых, то всемогущий Бог — для Ньютона и Лейбница это был не один из египетских богов, а христианский Бог — в неизреченной мудрости своей может сделать это без проблем. Втайне они были очень горды тем, что с помощью «исчисления» им, по меткому выражению Эйнштейна, удалось «заглянуть в карты старика», проникнуть в тайны Всемогущего с помощью обхождения с бесконечностями.
Как действовали открыватели «исчисления»? Они говорят, что мы хотим вычислить бесконечную сумму
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Число, пришедшее с холода. Когда математика становится приключением - Рудольф Ташнер», после закрытия браузера.