Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » Бозон Хиггса. От научной идеи до открытия «частицы Бога» - Джим Бэгготт

Читать книгу "Бозон Хиггса. От научной идеи до открытия «частицы Бога» - Джим Бэгготт"

268
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 14 15 16 ... 57
Перейти на страницу:

Что бы это ни было, утверждал Гелл-Манн, странность, подобно изоспину, сохраняется в сильном взаимодействии. В сильном взаимодействии с участием обычных (то есть не странных) частиц возникновение странной частицы с странностью +1 должно сопровождаться еще одной странной частицей со странностью –1, так чтобы общая странность сохранялась. Вот почему частицы обычно встречались парами.

Сохранение странности также объясняло, почему странные частицы так долго распадались. Сразу после возникновения преобразование каждой странной частицы назад в обычную было невозможно через быстро действующее сильное взаимодействие, так как это потребовало бы изменения странности (с +1 или –1 до 0). Поэтому странные частицы не распадались довольно долго, так как на них действовало слабое взаимодействие, которое не соблюдает сохранение странности.

И никто не знал почему.


В своей эпохальной работе о бета-радиоактивности Ферми провел аналогию между слабым взаимодействием и электромагнетизмом. Он сделал примерный подсчет относительных сил, которые участвуют во взаимодействиях, использовав массу электрона в качестве критерия. В 1941 году Джулиан Швингер задумался, каковы были бы последствия, если бы Ферми допустил, что слабое взаимодействие переносит гораздо, гораздо более крупная частица. Швингер подсчитал, что если бы эта частица была в несколько сот раз массивнее протона, то слабое взаимодействие и электромагнитное взаимодействие фактически могли быть одинаковыми. Это была первая подсказка, что слабое и электромагнитное взаимодействия удастся объединить в одно электрослабое.

Янг и Миллс обнаружили, что для того, чтобы учесть все способы взаимодействий нейтронов и протонов в ядре, им нужно три разных вида силовых частиц. В 1957 году Швингер пришел к выводу относительно слабых взаимодействий. Он опубликовал статью, в которой размышлял о том, что слабое взаимодействие переносят три частицы поля. Две из них W+ W— (как они называются сейчас) нужны, чтобы объяснить передачу электрического заряда в слабых взаимодействиях. Третья, нейтральная, частица нужна, чтобы объяснить случаи, когда заряд не передавался. Швингер полагал, что этой третьей частицей был фотон.


Рис. 8

Механизм ядерного бета-распада теперь стало возможно объяснить как распад нейтрона (n) на протон (p), с испусканием виртуальной W—-частицы. W—-частица затем распадается на электрон (e—) и антинейтрино (ν—е)


Согласно модели Швингера, бета-радиоактивность происходит следующим образом. Нейтрон распадается, испуская массивную W—-частицу и превращаясь в фотон. Короткоживущая частица W— в свою очередь распадается на высокоскоростной электрон (бета-частицу) и антинейтрино (см. рис. 8).

Швингер попросил одного из своих студентов в Гарварде поработать над этой проблемой.

Шелдон Глэшоу, сын еврейских иммигрантов из России, родился в США. В 1950 году он закончил научную школу в Бронксе вместе с одноклассником Стивеном Вайнбергом. Вместе с Вайнбергом он поступил в Корнеллский университет и получил степень бакалавра в 1954 году, а затем стал одним из аспирантов Швингера в Гарварде.

Тяжелые W-частицы, которые Швингер гипотетически предположил, должны были переносить электрический заряд. Как вскоре понял Глэшоу, этот простой факт означал, что на самом деле невозможно отделить теорию слабого взаимодействия от теории электромагнетизма. «Мы должны предположить, – писал он в приложении к докторской диссертации, – что удовлетворительная теория этих взаимодействий может быть создана, только если рассматривать их вместе»[46].

Глэшоу обратился к той же квантовой теории поля SU(2), разработанной Янгом и Миллсом, приняв на веру утверждение Швингера, что три частицы слабого взаимодействия – это две тяжелые W-частицы и фотон. Какое-то время он считал, что ему удалось разработать объединенную теорию слабого и электромагнитного взаимодействия. Больше того, он думал, что его теорию можно перенормировать.

Однако на самом деле он допустил ряд ошибок. Когда они обнаружились, он понял, что теория слишком много требует от фотона. Он решил увеличить симметрию, перемножив калибровочное поле Янга – Миллса SU(2) с калибровочным полем электромагнетизма U(1), что записывается в виде SU(2) × U(1). Он получил не полностью объединенное электрослабое взаимодействие, а скорее их «смесь», но у нее то преимущество, что она освободила фотон от необходимости отвечать за слабое взаимодействие.

Теории все еще требовался нейтральный переносчик слабого взаимодействия. У Глэшоу было уже три массивных частицы слабого взаимодействия, эквивалентных триплету B-частиц, впервые введенных Янгом и Миллсом. Это были W+, W— и Z0[47].

В марте 1960 года Глэшоу читал лекции в Париже. Там он столкнулся с Гелл-Манном, который взял академический отпуск в Калифорнийском технологическом институте (Калтехе) и преподавал в Коллеж де Франс приглашенным профессором. Как-то за обедом Глэшоу описал ему свою теорию SU(2) × U(1). Гелл-Манн предложил ему поддержку. «То, что вы делаете, – это хорошо, – сказал ему Гелл-Манн, – но в этом никто ничего не поймет»[48].

Понял кто-нибудь что-нибудь или нет, но физическое сообщество в основном не впечатлилось теорией Глэшоу. Как открыли Янг и Миллс, теория поля SU(2) × U(1) предсказывала, что переносчики слабого взаимодействия должны быть безмассовыми, как фотон. Если массы вставлялись в уравнения «вручную», это всегда приводило к тому, что теория оставалась неренормируемой. Глэшоу, как раньше Янг и Миллс, не смог решить, каким образом частицы поля приобретают массу.

Но на этом затруднения не закончились. Взаимодействия элементарных частиц включают распад одной или более частиц или их реакцию друг с другом, в результате чего возникают новые частицы. Когда в этих взаимодействиях участвуют заряженные частицы-посредники, их реакции называются заряженными токами, так как заряд в них «течет» от начальной к конечной частице. Физики ждали, что нейтральный переносчик взаимодействия Z0 проявит себя экспериментально в виде взаимодействий, не влекущих изменения заряда, которые называются нейтральными токами. Никаких свидетельств каких-либо подобных токов не нашлось в распаде странных частиц, который к тому времени стал главным способом получения данных о слабых взаимодействиях для ученых, занимающихся физикой частиц.

1 ... 14 15 16 ... 57
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Бозон Хиггса. От научной идеи до открытия «частицы Бога» - Джим Бэгготт», после закрытия браузера.

Комментарии и отзывы (0) к книге "Бозон Хиггса. От научной идеи до открытия «частицы Бога» - Джим Бэгготт"