Читать книгу "Кто изобрел современную физику? От маятника Галилея до квантовой гравитации - Геннадий Горелик"
Шрифт:
Интервал:
Закладка:
Он бы легко убедился, однако, что для Луны полученное соотношение, увы, не выполняется, и очень сильно. Скорость Луны в 60 раз меньше, «чем надо». Поскольку скорость Луны и расстояние до нее были хорошо известны, Галилей подумал бы об ускорении свободного падения g, которое сам измерил. Но измерил-то на поверхности Земли, а не на высоте Луны. Соотношение выполнилось бы, если ускорение свободного падения на высоте Луны в 3600 раз меньше земного. Расстояние до Луны в 60 раз больше радиуса Земли. Напрашивается гипотеза: ускорение свободного падения меняется с удалением от Земли обратно пропорционально квадрату расстояния. Эту гипотезу Галилей мог подтвердить и на спутниках Юпитера, и на спутниках Солнца — планетах. В результате он получил бы новый закон природы — общий закон свободного падения, определяющий ускорение свободного падения g(R) в точке, удаленной на расстояние R от небесного тела массы M
g(R) = GM/R2,
здесь G — константа, одинаковая для любого небесного тела, а значит, константа фундаментальная.
Как Галилей мог открыть общий закон свободного падения
Исследуя свободное падение, Галилей выяснил, что шар, брошенный горизонтально в пустоте, падает по параболе, форма которой определяется начальной скоростью V и ускорением свободного падения g: при этом скорость движения по горизонтали сохраняется Vг = V, а по вертикали растет со временем Vв = gt.
Сделаем мысленный эксперимент, поднявшись вместе с мысленным Галилеем на легендарную башню. Будем бросать шары горизонтально со все большей скоростью. Если скорость броска мала, шар упадет — по крутой параболе — на землю поблизости от башни. А если скорость очень велика, парабола станет очень пологой, и шар улетит очень далеко от Земли.
Спрашивается, с какой скоростью надо бросить шар, чтобы, свободно падая, он оставался на той же высоте от земной поверхности, уходящей закругленно «вниз»?
На этот вопрос ныне может ответить и школьник, нарисовав указанную схему, применив теорему Пифагора и учтя, что радиус Земли R ≈ 6000 км, а ускорение свободного падения g ≈ 10 м/сек2. Эти величины, как и теорему Пифагора, знал также и Галилей. И мог получить, что искомая скорость связана с g и R соотношением
V2= gR
и равна примерно 8 км/сек. Летя с такой скоростью, шар оставался бы на постоянном удалении от земной поверхности. Совсем как Луна.
Однако Галилей легко обнаружил бы, что лунные величины Rл ≈ 400 000 км и Vл ≈ 1 км/сек никак не укладываются в полученное соотношение. А чтобы уложились, нужно значение gл, примерно в 3600 раз меньшее измеренного Галилеем на поверхности Земли. Расстояние до Луны больше радиуса Земли примерно в 60 раз, а 60 60 = 3600. Отсюда Галилей мог предположить, что ускорение свободного падения g меняется с удалением от Земли обратно пропорционально квадрату расстояния R:
g ~ 1/ R 2.
Отсюда, с учетом предыдущего соотношения, следует, что скорость спутника меняется с расстоянием R от небесного тела:
V ~ 1/ R 1/2.
А если небесное тело имеет несколько спутников, то для них всех величина VR 1/2 одна и та же.
Подтвердить это свойство Галилей мог на им же открытых спутниках Юпитера:
Подтвердили бы это и спутники Солнца, то есть планеты (орбиты которых близки к круговым).
Так закон свободного падения, установленный в земных физических опытах, поднялся бы до астрономических высот. И так Галилей пришел бы к новому закону природы, который мог назвать общим законом свободного падения: ускорение свободного падения на расстоянии R от центра небесного тела
g(R) = A/R 2,
где А — некая константа, определяемая свойствами небесного тела.
Из наблюдательных данных Галилей мог вычислить соотношения таких констант для Земли, Юпитера и Солнца:
AЮпитера ≈ 300 AЗемли,
AСолнца ≈ 300 000 AЗемли.
Глядя на эти три величины, характеризующие Землю, Юпитер и Солнце, естественно было спросить, какие различия небесных тел ведут к различиям их констант A. Из явных различий в размере, в количестве вещества (массе) и в состоянии светимости легче всего предположить, что величина A пропорциональна массе небесного тела M: A = GM с неким коэффициентом G (который тоже можно грубо оценить, считая среднюю плотность Земли близкой к плотности ее твердых пород).
В результате Галилей получил бы общую зависимость сразу для всех трех небесных тех — Земли, Юпитера и Солнца:
g (R) = GM/R 2,
и здесь константа G — не простая, а фундаментальная, поскольку одинакова для Земли, Юпитера и Солнца и, судя по этому, для любого другого тела.
Это и есть общий закон свободного падения, открыть который вполне мог Галилей на его уровне знаний и умений.
Новый закон уже намекает на гравитацию Ньютона, до которой оставалось более полувека. Но для Галилея всего важнее было бы оправдание его веры в физическое единство мира — и мира подлунного, и мира надлунного. Он понял бы, что причина падения тел на Земле и причина, определяющая орбиты планет, — одна и та же. А поскольку причину падения естественно называть притяжением (к Земле), то так можно назвать и планетную силу. Мысленный спутник Земли помог бы Галилею увидеть, что свободное падение и движение планет — явления глубоко родственные.
Так он понял бы, что слова Кеплера о планетно-солнечных притяжениях не столь и ребяческие. Никакой солнечной силы, движущей планетами, конечно, нет, но притяжение есть и подчиняется вполне определенному закону. Более того, из этого закона следует и (третий) закон Кеплера, связывающий время, за которое планета проходит свою орбиту, с ее радиусом (T2 ~ R3). Значит, из закона свободного падения, установленного в земных физических опытах, следует астрономический закон, полученный Кеплером в результате многолетнего анализа множества астрономических наблюдений. Следует пока лишь для круговых орбит. Но если ускорение свободного падения известно в каждой точке пространства вокруг большого небесного тела, то можно и ставить задачу о том, как изменится круговая орбита спутника, если его толкнуть. Труднее, конечно, было заподозрить и тем более доказать, что при этом окружность превратится в эллипс. Но зато теперь Галилей мог уже принять подсказку первого закона Кеплера — об эллиптичности планетных орбит, к великой радости автора и к успокоению историков, ломающих головы над молчанием Галилея по поводу законов Кеплера.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Кто изобрел современную физику? От маятника Галилея до квантовой гравитации - Геннадий Горелик», после закрытия браузера.