Читать книгу "Что делать, когда машины начнут делать все. Как роботы и искусственный интеллект изменят жизнь и работу - Бен Принг"
Шрифт:
Интервал:
Закладка:
В связи с этим в данной главе мы объясним, чем являются эти новые машины – каковы компоненты технологии, как сочетаются, на что похож хороший образец и каким образом они глубоко повлияют на будущее вашей работы.
Мы знаем, обзор может оказаться похожим на то, как вы учились водить, будучи подростком, и ваш дядя, откинув капот машины, объяснял, как все это работает. Некоторые уроки могут быть скучноватыми (например, «это карбюратор, это свечи зажигания»), но сейчас, пользуясь интеллектуальными системами на непрерывной основе, мы должны создавать и применять их в своих компаниях, чтобы добиться конкурентного преимущества, поэтому рабочие знания здесь очень важны.
Давайте начнем с простого определения, а затем немного его распространим.
Интеллектуальная система совмещает в себе программное обеспечение (алгоритмы, деловой регламент, код машинного обучения, прогнозовая аналитика), комплектующее оборудование (серверы, датчики, мобильные устройства, возможность подключения), данные (контекстуализированные и в реальном времени) и человеческое участие (часто оценка или запросы).
Может прозвучать как «куча оборудования, ПО и данных соединить вместе – и там произойдет чудо». Так что давайте вкратце пройдемся по трем ключевым атрибутам, делающим интеллектуальную систему такой особенной.
• Программное обеспечение, которое учится. Программное обеспечение, составляющее центр новой машины, – это то, чего мы не видели никогда прежде. Впервые в истории человечества у нас есть инструмент, который может делать сам себя. ПО, способное к машинному обучению, со временем обновляет само себя. Система учится распознавать схемы и находить скрытые инсайты внутри данных – и все это, не будучи специально запрограммированным на то, что надо делать и где надо искать. Например, именно этим способом Uber узнает, как объединить правильного водителя с правильным пассажиром, а Facebook заполняет вашу персональную ленту новостей. В самих компаниях этим занимается всего несколько человек. И это было бы невозможно, поскольку в случае Facebook – это более миллиарда заходов пользователей на сайт в день1. Поэтому вместо людей за всеми и за каждой сессией следит машина, постоянно становясь еще умнее.
• Мощные аппаратные возможности обработки данных. В последние несколько десятков лет мы видели, как мощность оборудования и технологий росла по экспоненте. Ни одна инновация в истории не улучшалась и не проникала во все с такой скоростью. Закон Мура (Moore’s Law), согласно которому число транзисторов на микросхеме (а значит, и его производительность) удваивается приблизительно каждые два года, продолжает действовать, хотя недавно отпраздновал 50-летний юбилей. Однако недавно он был турбирован облаком, которое позволяет сверхмощным компьютерам объединяться друг с другом. Для сравнения: у сильной машины может быть впечатляющее количество лошадиных сил, как, например, четыреста тридцать пять лошадиных сил под капотом Ford Mustang GT, но вы не можете склеить два «мустанга», чтобы удвоить скорость. В то время как один компьютер может получить доступ к множеству других и выдать молниеносный результат. Таким образом, каждый раз, пользуясь Google, Facebook или Amazon, вы подключаетесь к группе связанных, супербыстрых серверов.
• Огромное количество данных. Данные – топливо новой экономики. Соотнесите этот факт с примером оператора такси, приведенным выше. В старые добрые времена, скажем, в 2012-м, ваша поездка собрала бы, наверное, три вида «данных»: запись вашего телефонного звонка с заказом такси, записи диспетчера и водителя, сделанные от руки, и детали оплаты (и конечно, эти рукописные записи редко проверяли или анализировали). Сравните это с типичной поездкой на Uber, после которой сохранится запись о вашем запросе, локации, времени, маршруте поездки, использованном устройстве, оплате и чаевых, водителе, пассажире, рейтинге водителя и рейтинге пассажира. А затем умножьте все это на более чем два миллиарда поездок, предпринятых (к середине 2016 года) через Uber.
Коротко говоря, три эти специфические черты – самообучающееся ПО, мощные возможности аппаратной обработки данных и невероятное количество данных – объединяются, чтобы оживить интеллектуальные системы (кстати говоря, в некоторых кругах о них сейчас говорят как о программных «платформах», но для ясности и последовательности будем использовать термин «интеллектуальные системы»). Далее в главе расскажем, как эти участки сочетаются друг с другом. А прежде чем взяться за это, полезно дать несколько определений самой противоречивой и неверно понимаемой части машины – искусственному интеллекту.
Термин «искусственный интеллект» настолько часто употребляется, что на самом деле вызывает больше путаницы, чем ясности. На рынке существует много определений, и почти все подчеркивают сравнение с человеческими существами. Подобные определения, например данное в словаре Мерриам-Уэбстер («способность машины имитировать поведение разумного человека»), немедленно отправляют многих из нас по ошибочной дорожке, поскольку мы начинаем думать: «Какой человеческий разум может быть и будет сымитирован?» Мы считаем, что это неправильно.
Наше определение проще:
ИИ – это область компьютерной науки, занимающаяся машинами, которые учатся.
Это выражение яснее. Стремящиеся к антропоморфизму определения ИИ неверны по двум причинам.
1. ИИ, дающий бизнес-результаты, скорее сосредоточен на том, что по-настоящему хорошо делают машины, а не пытается повторить то, что уже хорошо делают люди.
2. Люди уже давно зарекомендовали себя как несовершенные «машины» (просто посмотрите шестичасовые новости). Есть некий нарциссизм в том, чтобы считать проектной целью создания новой машины именно человека.
Таким образом, ИИ – это не о построении робота, передразнивающего форму и поведение человека. Вместо этого примененный на практике ИИ представляет собой следующее поколение компьютерных систем, которые, как старые системы, располагаются в кондиционируемых компьютерных комнатах, а доступ осуществляется через сети и системы (как те приложения на вашем смартфоне), которые вы, может быть, и не видите, но регулярно используете.
Но это определение – только начало. Прорываясь через мешанину определений, мы нашли крайне полезным разделить ИИ на три подкласса2:
1. Узкий ИИ;
2. Общий ИИ;
3. Супер ИИ.
Узкий ИИ, также называемый «прикладной ИИ», или «слабый ИИ», – это базовое определение для данной книги. Важно отметить, что весь ИИ сегодня – и как минимум на следующее десятилетие – узкий (также говорят «узкий искусственный интеллект», или УИИ). Подобный ИИ создается для конкретных целей и ориентирован на выполнение бизнес-задач (например, управление автомобилем, проверка рентгеновских исследований, отслеживание финансовых операций на предмет мошенничества) внутри «узкого» контекста продукта, услуги или бизнес-процесса. Именно это применяют сегодня разработчики FANG, обеспечивая нас цифровыми приключениями. Несмотря на то что кажется, будто новые машины могут сделать что угодно, их цель очень хорошо делать одну конкретную вещь. И поэтому системы УИИ будут безнадежны в достижении других целей, помимо тех, для которых их специально разрабатывали (просто попробуйте спросить свой GPS-навигатор, подходит ли этот луковый бублик с мягким сыром к вашей диете). УИИ – это просто инструмент, пусть и очень мощный, дающий базу всему, что мы будем исследовать в дальнейшем.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Что делать, когда машины начнут делать все. Как роботы и искусственный интеллект изменят жизнь и работу - Бен Принг», после закрытия браузера.