Читать книгу "О том, чего мы не можем знать. Путешествие к рубежам знаний - Маркус Дю Сотой"
Шрифт:
Интервал:
Закладка:
Хаотическая траектория единичной планеты, вращающейся вокруг двух солнц
Если бы природа не была прекрасной, она не стоила бы того, чтобы быть познанной, а если бы природа не стоила того, чтобы быть познанной, то и жизнь не стоила бы того, чтобы быть прожитой.
Когда я учился в университете, я потратил кучу времени, играя в бильярд в комнате отдыха студенческого общежития. Я мог бы сделать вид, что занимался там исследованиями углов и всего такого прочего, но на самом деле я попросту убивал время. Это был хороший способ оттянуть тот момент, когда мне нужно было браться за решение заданных на очередную неделю задач, с которым я не мог справиться. Тем не менее бильярдный стол таит в себе множество интересной математики. И эта математика имеет самое прямое отношение к моему стремлению познать игральную кость.
Если запустить шар по бильярдному столу и отметить его траекторию, а затем запустить другой шар в направлении, очень близком к первому, то второй шар опишет траекторию, очень похожую на путь первого. Пуанкаре изначально считал, что тот же принцип применим и к Солнечной системе. Если отправить планету по слегка отличающейся траектории, то развитие Солнечной системы пойдет по очень похожему пути. Это интуитивно очевидно для многих из нас: малое изменение изначальной траектории планеты не должно привести к значительным изменениям пути ее движения. Но Солнечная система, по-видимому, играет на своем бильярде в несколько более интересную игру, чем я играл студентом.
Как это ни удивительно, если изменить форму бильярдного стола, то такое интуитивное представление окажется неправильным. Например, если запускать шары по столу, имеющему форму стадиона с полукруглыми торцами и прямыми боковыми сторонами, то их траектории будут разительно отличаться друг от друга, несмотря на то что шары были запущены в почти одном и том же направлении. Это визитная карточка хаоса – чувствительность к крайне малым изменениям начальных условий.
Две быстро расходящиеся траектории бильярдного шара на столе в форме стадиона
Поэтому моя задача состоит в том, чтобы установить, предсказуемо ли падение игральной кости подобно обычной игре в бильярд, или же эта кость играет в бильярд хаотический.
Хотя считается, что лавры отца хаоса принадлежат Пуанкаре, такая чувствительность многих динамических систем к малым изменениям была на удивление мало известна в течение многих десятилетий XX в. Собственно говоря, для обретения идеями хаоса более широкой известности потребовалось повторное открытие этого явления ученым Эдвардом Лоренцем, который, как и Пуанкаре, думал, что допустил какую-то ошибку.
В 1963 г., когда Лоренц, работавший в Массачусетском технологическом институте метеорологом, обсчитывал на своем компьютере уравнения изменения температуры динамической текучей среды, он решил, что одна из моделей требует более длительного обсчета. Он взял некоторые данные, полученные раньше, и снова ввел их в машину, собираясь перезапустить модель начиная с этой точки.
Вернувшись после чашки кофе, он с ужасом обнаружил, что компьютер не воспроизвел предыдущие результаты, а очень быстро выдал значительно расходящиеся с ними предсказания изменений температуры. Сначала он не мог понять, что происходит. Если ввести в уравнение то же самое число, на выходе не ожидаешь получить другой ответ. Но через некоторое время он понял, в чем было дело: он ввел не те же самые числа. В использованной им компьютерной распечатке данных значения были указаны с точностью до третьего знака после запятой, а вычисления проводились с точностью до шестого знака.
Хотя числа действительно отличались друг от друга, расхождения между ними были лишь в четвертом знаке после запятой. Трудно было ожидать, что это приведет к такой большой разнице, но Лоренца поразило то влияние, которое такое малое расхождение оказало на результат. Ниже показаны два графика, созданные с использованием одного и того же уравнения, но с чрезвычайно малым различием между данными, введенными в уравнение. В одном графике значение входного параметра равно 0,506127. Во втором графике оно округлено до 0,506. Хотя графики начинаются со сходных траекторий, их поведение очень быстро становится совершенно разным.
Модель, которую обсчитывал Лоренц, была упрощенным вариантом метеорологических моделей, анализирующих поведение атмосферных потоков под влиянием перепадов температуры. Его повторное открытие того, как малые изменения начального состояния системы могут оказать такое сильное влияние на исход, имело огромное значение для наших попыток использовать математические уравнения для предсказания будущего. Как писал сам Лоренц:
Два состояния, между которыми имеются неощутимые различия, могут развиться в существенно разные состояния. Любая ошибка в наблюдениях настоящего состояния – а в любой реальной системе такие ошибки представляются неизбежными – может сделать приемлемое предсказание состояния в отдаленном будущем невозможным.
Когда Лоренц рассказал о своей находке коллеге, тот ответил: «Эдвард, если твоя теория справедлива, то один взмах крыльев чайки может навечно изменить ход истории».
Чайка в конце концов уступила место знаменитой теперь бабочке в 1972 г., когда Лоренц доложил о своем открытии Американской ассоциации содействия развитию науки[26] в докладе, озаглавленном «Может ли взмах крыльев бабочки в Бразилии вызвать торнадо в Техасе?».
Интересно отметить, что и чайку, и бабочку, возможно, обогнал кузнечик. Оказывается, еще в 1898 г. профессор У. С. Франклин осознал то чудовищное влияние, которое сообщество насекомых может оказывать на погоду. Вот что он писал в рецензии на одну книгу:
Бесконечно малая причина может породить конечный эффект. Таким образом, долговременный подробный прогноз погоды невозможен, а единственное возможное предсказание представляет собой предположение о последующих тенденциях и свойствах шторма, выведенное на основе его предыдущих стадий; причем точность такого предсказания следует оценивать с учетом того, что полет кузнечика в Монтане может развернуть шторм, идущий на Филадельфию, в сторону Нью-Йорка!
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «О том, чего мы не можем знать. Путешествие к рубежам знаний - Маркус Дю Сотой», после закрытия браузера.