Читать книгу "Как работает вселенная. Введение в современную космологию - Сергей Парновский"
Шрифт:
Интервал:
Закладка:
Проиллюстрируем свойства этих моделей рис. 2.2, на котором показано, как их основные параметры (масштабный фактор и постоянная Хаббла) изменяются со временем. Сразу после Большого взрыва постоянная Хаббла была бесконечно большой, а масштабный фактор бесконечно малым. В закрытой модели непосредственно перед Большим хрустом постоянная Хаббла стремится к значению, равному минус бесконечности, а масштабный фактор вновь становится бесконечно малым. Естественно, постоянная Хаббла обращается в ноль, когда замкнутая Вселенная достигает своего максимального размера.
Из того факта, что Вселенная сейчас расширяется, мы приходим к выводу, что она описывается либо открытой, либо плоской моделями, либо закрытой моделью в фазе расширения. В любом случае ее масштабный фактор до сих пор рос монотонно. График его изменения от Большого взрыва до текущей эпохи показан на рис. 2.2. Длина волны фотона, излученного давно, когда Вселенная была меньше, увеличилась с тех пор в 1/u раз, где u – относительный масштабный фактор в ту эпоху, когда был излучен свет. Поэтому красное смещение фотона, т. е. его z-фактор, равно z = 1/u – 1. Чем старше свет, излученный объектом, тем дальше объект и тем больше его красное смещение. Именно поэтому красное смещение является хорошим индикатором расстояния.
Вопрос: Как смещался бы спектр, если бы мы жили в сжимающейся замкнутой Вселенной?
Ответ: Начнем с построения графика зависимости относительного масштабного фактора от времени для этого случая, охватив период от Большого взрыва до современной эпохи. Это, естественно, часть графика, приведенного на рис. 2.3. Мы видим, что масштабный фактор сначала растет от нуля в момент Большого взрыва до некоторого значения amax, большего единицы, а затем уменьшается до единицы в современную эпоху. Естественно, что в некоторой точке B во время фазы расширения масштабный коэффициент тоже равен единице. Длина волны света, испускаемого в точке В, вначале увеличивается в amax раз, а затем уменьшается в amax раз, и свет приходит к нам сейчас с точно такой же длиной волны, с какой он был испущен. Таким образом, любой свет, испущенный до момента времени B, наблюдался бы нами с точно такой же длиной волны, какую он имел в точке В. Это означает, что спектр любого объекта, излучившего свет между Большим взрывом и точкой В, будет иметь красное смещение. Таким образом, для любого света, испущенного до момента B, мы можем использовать те же формулы, что и в случае расширяющейся Вселенной.
Длина волны любого света, излучаемого после точки B, будет увеличиваться меньше, чем она станет уменьшаться впоследствии на этапе сжатия. Это означает, что его наблюдаемая длина волны будет короче, чем излучаемая, т. е. его спектр будет смещен в фиолетовую область. Достаточно очевидно, что максимальное синее смещение будет наблюдаться для света, излучаемого в тот момент времени, когда Вселенная имела максимальный масштабный фактор. Если формально применять формулу для красного смещения в расширяющейся Вселенной, мы получим отрицательную величину z. Более того, любое такое значение z будет соответствовать двум различным моментам времени и, следовательно, двум различным расстояниям. Это вызвано тем фактом, что Вселенная обретает соответствующий масштабный фактор дважды: во время расширения от точки В до максимального размера и при сжатии от максимального размера до современной эпохи.
Астрономы, живущие в этом мире, наблюдали бы объекты, у которых синее смещение увеличивается с расстоянием, затем при дальнейшем увеличении расстояния до объектов синее смещение уменьшается до нуля и сменяется красным смещением. Эти астрономы, несомненно, имели бы массу проблем при определении расстояний до удаленных объектов. К счастью, в соответствии с современными ограничениями на значения космологических параметров наша Вселенная никогда не будет сжиматься.
Одна из философских проблем, связанных с моделями Фридмана, – это так называемая «стрела времени» – термин, введенный Артуром Эддингтоном. Время отличается от пространственных координат тем, что любой объект, в том числе и мы сами, должен двигаться по оси времени в определенном направлении независимо от его воли. Стрела времени направлена из прошлого в будущее. Отличить прошлое от будущего мы можем исходя из принципа причинности. Принцип причинности, вообще говоря, – философский принцип, но он очень важен для физики. Он заключается в том, что причина всегда должна предшествовать следствию.
Направление стрелы времени, связанной с принципом причинности, иногда называют психологической стрелой времени. Различие прошлого и будущего для человека ясно видно из того, что он помнит прошлое, но не знает будущего. Естественно, это является следствием принципа причинности. Поэтому, на наш взгляд, предпочтительнее говорить о стреле времени, связанной с принципом причинности, не привлекая явно вторичные понятия из психологии.
Всегда ли существует стрела времени? В ОТО существуют решения, допускающие замкнутые времениподобные линии. Путешествуя вдоль такой линии, можно вернуться в исходную точку пространства и времени, по пути побывав в своем прошлом. Исходя из принципа причинности, физики отбрасывают такие решения, считая их нефизическими. Таким образом, в реальном физическом мире стрела времени всегда существует.
Как проявляет себя стрела времени в различных разделах физики? В механике законы движения тел симметричны относительно смены знака времени до тех пор, пока не появляется трение или другие диссипативные силы. В термодинамике все процессы делятся на обратимые, для которых не важен знак времени, и необратимые, для которых направление стрелы времени определяется возрастанием энтропии. Интересно проявляет себя стрела времени в электродинамике. Уравнения Максвелла полностью симметричны относительно изменения знака времени. Асимметрия заключена не в уравнениях, а в выделенных начальных условиях.
Покажем это на примере. Мы выстрелили заряженным шариком из рогатки, в результате чего он улетел с постоянной скоростью. В течение времени, когда он двигался ускоренно под действием сил натяжения резинки, он испускал электромагнитные волны, уходящие в бесконечность. Теперь посмотрим на этот процесс с другой стороны. Заряженный шарик двигается с постоянной скоростью, после чего на него сходятся из бесконечности электромагнитные волны с тщательно подобранными фазой, амплитудой и частотой, которые его замедляют, а импульс шарика передается резинке. Не очень правдоподобная картина. Разница состоит в том, что в первом случае у нас имеются вполне естественные начальные условия, а во втором они должны быть специально подобраны с ювелирной точностью. Естественно, что эта временна́я асимметрия связана исключительно с причинностью. Мы рассматриваем именно начальные, а не конечные условия для того, чтобы обеспечить возможность корректно сформулировать задачу[32]. Поэтому электродинамика не вводит свою дополнительную стрелу времени, а использует стрелу времени, связанную с принципом причинности.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Как работает вселенная. Введение в современную космологию - Сергей Парновский», после закрытия браузера.