Читать книгу "Как не ошибаться. Сила математического мышления - Джордан Элленберг"
Шрифт:
Интервал:
Закладка:
С кривой Лаффера все в порядке, не совсем хорошо обстоит дело с тем, как ее используют. Последовавшие за дудочкой Ванниски политики стали жертвой старейшего ложного силлогизма, присутствующего в его книге:
Вполне возможно, что снижение налогов приведет к увеличению объема государственных доходов.
Мне хотелось бы, чтобы снижение налогов привело к увеличению объема государственных доходов.
Таким образом, это именно тот случай, когда снижение налогов приведет к увеличению объема государственных доходов[32].
Локально прямая, глобально кривая
Наверное, вы не думаете, что вам нужен профессиональный математик, который объяснит, что не все линии прямые. Однако линейные рассуждения присутствуют повсюду. Вы прибегаете к ним каждый раз, когда утверждаете, что если хорошо иметь нечто, то лучше иметь этого еще больше. Именно так рассуждают политические крикуны: «Вы поддерживаете военные действия против Ирана? Тогда, полагаю, вы предпочли бы осуществить сухопутную операцию против любой страны, которая лишь косо посмотрит в нашу сторону!» В то же время звучит и такое: «Хотите поддерживать взаимодействие с Ираном? Наверное, вы также считаете, что и Адольфа Гитлера просто неправильно поняли».
Почему такие рассуждения столь распространенны? Ведь даже малейшее умственное усилие с нашей стороны позволит осознать их ошибочность. Почему вообще у кого бы то ни было может хотя бы на мгновение возникнуть мысль, что все линии прямые, когда совершенно очевидно обратное?
Одна из причин заключается в следующем: в каком-то смысле они действительно прямые. История эта начинается с Архимеда.
Чему равна площадь данного круга?
В современном мире это настолько стандартная задача, что ее можно включать в SAT[33]. Площадь круга равна πr², а в нашем случае радиус равен 1, значит, площадь этого круга равна π. Однако две тысячи лет назад вопрос был открытым и настолько важным, что привлек внимание Архимеда.
Почему вопрос площади окружности оказался настолько сложным? Во-первых, на самом деле древние греки не считали π числом, как считаем мы. В их понимании все числа были целыми, то есть такими, с помощью которых можно что-то подсчитать: 1, 2, 3, 4… Однако теорема Пифагора[34] – первый большой прорыв в древнегреческой геометрии – превратила всю их систему счисления в руины.
Перейдем к следующему рисунку.
Теорема Пифагора гласит, что квадрат гипотенузы (сторона прямоугольного треугольника, которая нарисована здесь по диагонали и не проходит через прямой угол) равен сумме квадратов двух других сторон, или катетов. В данном примере квадрат гипотенузы равен 1² + 1² = 1 + 1 = 2. Это означает, что гипотенуза длиннее 1, но короче 2. Проверяется без всяких теорем – просто на глаз. Сам факт, что длина гипотенузы не представляет собой целое число, не был проблемой для древних греков. Может быть, мы просто измеряли все не в тех единицах. Если мы выберем такую единицу длины, чтобы длина катетов была равна 5 единицам, тогда вы с помощью линейки легко проверите, что в таком случае длина гипотенузы составит почти 7 единиц. Почти – но все-таки немного больше, поскольку квадрат гипотенузы равен:
5² + 5² = 25 + 25 = 50,
но если длина гипотенузы составляла бы 7 единиц, квадрат гипотенузы был бы равен 49.
А если мы взяли бы катеты длиной 12 единиц, длина гипотенузы была бы равна почти 17 единиц, но все же немного короче, поскольку 12² плюс 12² равно 288, что незначительно меньше чем 17², равное 289.
Примерно в V столетии до нашей эры один из представителей пифагорейской школы сделал потрясающее открытие: не существует способа измерить равнобедренный прямоугольный треугольник таким образом, чтобы длина каждой его стороны представляла собой целое число. Современный человек сказал бы, что «квадратный корень из 2 – это иррациональное число», то есть число, которое нельзя представить в виде соотношения двух целых чисел. Но пифагорейцы так не говорили. Разве могли они сказать нечто подобное? В основе их представлений о количестве лежала идея о соотношении целых чисел. Следовательно, в их понимании длина гипотенузы, как оказалось, вообще не есть число.
Это повлекло за собой неразбериху. Вы наверняка помните, что пифагорейцы были крайне своеобразными людьми. Их философия представляла собой рагу из суждений, часть которых мы назвали бы математикой, часть – религией и оставшуюся часть – психическим расстройством. Пифагорейцы были убеждены, что нечетные числа символизируют добро, тогда как четные – зло, что по ту сторону Солнца находится планета Антихтон (Антиземля, Противоземля), а также что нельзя есть бобы, как писали некоторые, потому, что в них находятся души умерших. Ходили слухи, будто Пифагор разговаривал с домашним скотом (он велел животным не есть бобы), а также что он был одним из немногих древних греков, носивших штаны{22}[35].
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Как не ошибаться. Сила математического мышления - Джордан Элленберг», после закрытия браузера.