Читать книгу "Генетика за 1 час - Валерия Черепенчук"
Шрифт:
Интервал:
Закладка:
Давайте посмотрим, какие еще интересные исследования происходили параллельно с разработкой мутационных теорий. А заодно познакомимся с еще несколькими определяющими понятиями генетики.
Недавно мы упоминали слово «аллеломорфы» (от греч. allelon – взаимно и morphe – вид). Во времена Саттона оно было тождественно появившемуся позднее понятию «гены». В. Иогансен, автор термина «ген», также предложил в 1909 г. понятие «аллель», который сейчас понимается чуть уже, чем ген. Аллелями принято называть две формы гена, отвечающего за один и тот же признак, который может проявляться по-разному. Например, за цвет глаз отвечает определенный ген. Но разные аллели гена могут отвечать за голубой или карий цвет глаз. Если родительские аллели одинаковы, то потомство будет гомозиготным (от греч. őμοιος – подобный, похожий, равный и ζυγωτός – спаренный, соединенный). Если же аллели разные, то оно будет гетерозиготным (от греч. héteros – иной, другой) и в первом поколении проявится доминантный признак, а в последующих произойдет расщепление. Что это такое – вы уже знаете по законам Менделя.
С понятием «ген» непосредственно связаны «генотип» и «фенотип» (также авторства Иогансена). Генотипом мы сейчас называем всю совокупность генов конкретного организма, а фенотип (от греч. φαίνω) – являю, обнаруживаю и τύπος – образец) – это набор внешних и внутренних признаков организма, которые были им получены в процессе развития и основаны на генотипе. Как говорят, генотип – это наследственность, а фенотип – то, как она реализовалась. Например, вы приобрели несколько клубней элитного картофеля, взятых с одного куста. У них генетически заложен крупный размер клубней, ровная окраска и высокая урожайность. Но половину клубней вы посадили в плодородный чернозем, удобряли, поливали, окучивали. А другую половину просто сунули в необработанную землю и забыли о них. В результате картофель, получавший достойный уход, отблагодарил вас высоким урожаем и в полной мере проявил все свои элитарные задатки. А те кусты, которые росли как попало, конечно, сохранили часть своих замечательных качеств, но клубни на них уродились мелкими и корявыми (и, скорее всего, менее вкусными), нежели на тех кустах, за которыми тщательно ухаживали. Таким образом, фенотип формируется на основе генотипа, внешней среды и возможных мутаций.
В первой трети XX в. генетики уделяли большое внимание изменчивости – одному из ключевых понятий науки. Под изменчивостью мы понимаем способность организма приобретать какие-либо отличия от остальных представителей своего вида. Причем принято выделять два типа изменчивости – прерывистую (дискретную] и непрерывную. В первом случае особи одного вида можно разделить на несколько групп, хорошо отличимых друг от друга, по ряду признаков. Например, вспомним опыты Менделя: у разных сортов гороха зерна были либо желтые и гладкие, либо зеленые и морщинистые. Это дискретная изменчивость, так как различия между разными сортами одного вида видны невооруженным глазом, группы резко отличаются друг от друга. Белая или ярко-малиновая окраска цветов флокса – тоже образец дискретной изменчивости. Если же мы возьмем такой признак, как, скажем, количество икринок в кладках нескольких самок озерной лягушки, то оно будет весьма разнообразным, четких градаций тут нет. Хороший пример – человеческий рост: например, в группе из 50 человек самый высокий и самый маленький будут отличаться друг от друга очень резко. А если поставить всех по росту, то два человека, стоящих рядом, будут отличаться совсем незначительно. Таким образом, непрерывная изменчивость проявляется в среде представителей одного вида размыто и имеет очень много промежуточных форм.
Существуют разные классификации изменчивости по ее происхождению, в основном выделяют следующие.
• Мутационная изменчивость (изменения происходят на генном уровне, влияет на наследственность). С мутациями вы уже знакомы.
• Комбинативная (возникает, когда смешиваются генотипы. Например, рождение детей у пары с резко отличающимся друг от друга цветом глаз, волос, кожи).
• Модификационная (самая нестойкая, возникает под влиянием окружающей среды: например, бледные листья у растения, лишенного солнца).
Но какова значимость разных видов изменчивости в ходе эволюционного процесса? Как мы помним, Хуго де Фриз на первое место в эволюции поставил мутации. Но всегда ли резкое изменение в одном организме (или даже в нескольких) приведет к появлению новых устойчивых признаков в масштабах вида? С таких вопросов начинался особый раздел генетики – генетика популяционная, изучающая распределение аллелей и возможности их изменения. Основой для нее стал закон Харди – Вайнберга, сформулированный около 1908 г.
Для начала разберемся, что такое популяция. Так принято называть группу организмов одного вида, которые проживают на определенной территории и относительно обособлены от других подобных групп (например, географически, располагаются на острове или в долине, окруженной горами. У человека популяции могут быть ограничены религиозными запретами или социальными традициями). Между собой они могут скрещиваться свободно. У популяции общий генофонд (еще одно новое слово, которое означает совокупность всех возможных аллелей данной популяции).
И вот в 1908 г. английский математик Годфри Харди (1877–1947 гг.) и немецкий врач Вильгельм Вайнберг (1862–1937 гг.) независимо друг от друга вывели интересную закономерность: в ряду поколений одной популяции соотношение частот генотипов будет сохраняться, если не повлияют какие-то факторы извне. Причем эта закономерность может быть выражена математически.
Предположим, в некоей популяции представлены два аллеля: доминантный (А) и рецессивный (а). Обозначим частоту встречаемости первого аллеля буквой р, второго – q, все экземпляры популяции – 1. Соответственно, р + q = 1.
В условиях свободного скрещивания справедливо равенство: р2 + 2pq + q2 = 1.
Но нужны еще несколько условий:
• отсутствие мутаций;
• отсутствие отбора;
• большие размеры популяции;
• отсутствие миграции (прибытия в популяцию новых членов и ухода из популяции старых).
Конечно, далеко не в каждой популяции все эти условия соблюдаются полностью. Но в целом закон Харди – Вайнберга надежен. И применяется он в генетике достаточно широко, например, в животноводстве позволяет просчитать вероятность формирования нужных качеств, а в медицине – спрогнозировать возможность проявления наследственных заболеваний. Ситуацию, описанную в законе Харди – Вайнберга, когда на протяжении многих поколений распределение разных аллелей в популяции остается неизменным, называют генетическим равновесием.
Если на распределение генов повлияли какие-то случайные события, происходит явление, которое принято называть дрейфом генов.
Например, в популяции диких лошадей, для которых в целом характерна ровная гнедая окраска, было несколько пятнистых особей, то есть они несли в себе особый вариант гена, отвечающего за масть. В результате нападения хищников все пятнистые лошади погибли – следовательно, они перестали влиять на популяцию, и частота распределения генов изменилась. Гены «дрейфуют». Собственно термин «дрейф генов» был введен американским ученым Сьюэлом Райтом (1889–1988 гг.) около 1931 г., но соответствующие исследования велись задолго до того.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Генетика за 1 час - Валерия Черепенчук», после закрытия браузера.