Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » Перспективы отбора - Елена Наймарк

Читать книгу "Перспективы отбора - Елена Наймарк"

221
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 11 12 13 ... 81
Перейти на страницу:

У первого потомка нет ни одной работающей копии гена C, а второму не досталось рабочих копий гена A. Заметим, что при наличии митоза этой проблемы не было бы: оба потомка имели бы точно такой же генотип, как у родительской клетки, и жили бы припеваючи.

Поскольку полиплоидность приводит к вырождению не сразу, а сначала дает сильное преимущество, она может стать своеобразной «эволюционной ловушкой» для прокариот в мутагенной среде. Если разрешить модельным микробам иногда при делении распределять хромосомы не поровну, то есть менять свою плоидность, то полиплоиды сначала быстро вытесняют моноплоидов, а затем сами деградируют и вымирают. Это происходит даже в том случае, если подавляющее большинство клеток в исходной популяции — облигатные моноплоиды и лишь немногие клетки способны иногда производить потомков, имеющих на одну хромосому больше. Полиплоидность распространяется как инфекция — и приводит популяцию к гибели. При тех же параметрах популяция, состоящая только из облигатных моноплоидов, может жить неопределенно долго.



Четыре способа защиты полиплоидов от вырождения. Чтобы выжить, такие полиплоиды должны выработать специальные адаптации, замедляющие накопление вредных мутаций. Они могут использовать для этого как минимум четыре разные стратегии. Вот тут-то и начинается самое интересное. Дело в том, что все эти четыре способа защиты полиплоидных прокариот от вырождения подозрительно напоминают те или иные аспекты эукариотического секса.

Первый способ — «циклы плоидности». Можно периодически сбрасывать уровень плоидности, например, делясь чаще, чем происходит репликация хромосом. Если заниматься этим достаточно интенсивно, то в популяции будет постоянно присутствовать (или периодически возникать) заметная доля моноплоидов, у которых все вредные рецессивные мутации проявляются в фенотипе и потому эффективно вычищаются отбором.

Второй способ — внутригеномная рекомбинация, то есть перетасовка генетической информации между хромосомами. Есть два основных варианта такой рекомбинации. Первый вариант называется генной конверсией. В этом случае фрагмент одной хромосомы копируется в гомологичный участок другой, причем аллели, находящиеся на второй хромосоме, «затираются» аллелями первой. Интенсивная генная конверсия ведет к унификации копий генома. Любая новая мутация либо быстро затирается и исчезает, либо распространяется на все хромосомы, переходит в гомозиготное состояние и становится видимой для отбора. Моделирование показывает, что генная конверсия, если ее интенсивность существенно превышает темп мутагенеза, может спасти полиплоидную популяцию от вырождения.

Полиплоидные галофильные и метаногенные археи активно используют генную конверсию, предположительно, именно для того, чтобы унифицировать свои хромосомы и тем самым защититься от вырождения. Эту стратегию, вероятно, с той же целью применяют и пластиды растений (они тоже полиплоидные и не имеют митоза).

Второй вариант внутригеномной рекомбинации — кроссинговер. В этом случае гомологичные участки двух хромосом не затирают друг друга, а меняются местами. Кроссинговер не может ни уничтожить вредную мутацию, ни перевести ее в гомозиготное состояние. Поэтому сам по себе он бесполезен для полиплоидных микробов, но в сочетании с ГПГ дает сильный положительный эффект (см. ниже).

Третий способ — интенсивный генетический обмен (ГПГ) между близкородственными клетками. Моделирование показывает, что горизонтальный перенос генов (такой, как на рис. 5.1) хорошо защищает полиплоидов от вырождения, особенно если осуществляется с высокой частотой. Полиплоидные археи действительно меняются друг с другом генами на полную катушку. Эволюционный эффект интенсивного близкородственного ГПГ в целом такой же, как у эукариотического секса (мы рассказывали об этом в книге «Эволюция. Классические идеи в свете новых открытий»). Интересно, что кроссинговер, бесполезный для популяций, не практикующих ГПГ, оказывается очень полезен для микробов, периодически заимствующих гены друг у друга.

Польза, приносимая ГПГ, имеет ту же природу, что и польза, приносимая половым размножением: оба процесса позволяют отбору отделять полезные аллели от вредных, эффективно закрепляя первые и выбраковывая вторые (см. Исследование № 7). При этом ГПГ тем полезнее, чем чаще он происходит. При высоком темпе мутирования это особенно актуально. Однако у прокариотического ГПГ есть встроенный конструктивный дефект, не позволяющий этому процессу достигать оптимальной (то есть высокой) частоты. Дефект кроется в асимметричности («нечестности») прокариотического ГПГ, которую хорошо иллюстрирует рис. 5.1. На рисунке видно, что чужой (донорский) аллель B заместил и уничтожил аллель b в геноме реципиента. Ситуация, когда свои аллели систематически замещаются чужими, может оказаться эволюционно нестабильной. Чтобы понять это, нужно подумать о судьбе генов, влияющих на интенсивность (частоту) захвата чужой ДНК и замещения собственных аллелей чужими. Допустим, у такого гена есть два аллеля: один способствует ГПГ, другой препятствует. Какой из них победит в конкуренции? Моделирование показывает, что аллели, препятствующие ГПГ, могут распространяться в генофонде и вытеснять аллели, способствующие ГПГ, несмотря на всю пользу, которую получают от ГПГ отдельные организмы и популяция в целом. Ведь аллели, способствующие ГПГ, будут то и дело «затираться» конкурирующими аллелями, которые ГПГ блокируют. А вот в обратную сторону замещение происходить не будет — аллели, блокирующие захват чужой ДНК и замещение фрагментов своей хромосомы чужими, не будут затираться как раз потому, что они блокируют ГПГ. В результате аллели, препятствующие ГПГ, будут вести себя как «эгоистичные гены», наращивая свою частоту в генофонде, — несмотря на то, что это вредно для особей и популяции в целом.

Могут ли полиплоидные микробы обойти это препятствие, чтобы получить возможность осуществлять межорганизменный генетический обмен с высокой частотой? По-видимому, да. Для этого им нужно, во-первых, начать обмениваться не кусочками хромосом, а целыми хромосомами, и во-вторых — отказаться от асимметричной генной конверсии, исключить «затирание» одних аллелей другими и использовать для перемешивания фрагментов хромосом только кроссинговер. Умеют ли полиплоидные археи меняться целыми хромосомами, точно не известно, но это представляется вполне вероятным, исходя из того, что известно о половом процессе у Haloferax.

С кроссинговером, правда, возникает еще одна проблема: кольцевые хромосомы плохо для него подходят. При нечетном числе перекрестов они не могут нормально разойтись после рекомбинации и превращаются в одно большое кольцо. Поэтому, если вы хотите часто использовать кроссинговер, вам нужно отказаться от кольцевых хромосом и заменить их линейными. Идея о том, что линейные хромосомы понадобились эукариотам именно для частого кроссинговера, а не для чего-то еще, уже высказывалась ранее рядом специалистов, и с ней трудно спорить, учитывая, что во всех прочих отношениях кольцевые хромосомы удобнее.

Четвертый способ, помогающий полиплоидным амитотическим микробам защититься от вырождения, — самый радикальный. Он состоит в том, чтобы изобрести митоз — механизм аккуратного и точного распределения хромосом по дочерним клеткам, гарантирующий, что каждый потомок получит ровно по одной копии каждой родительской хромосомы. Это моментально снимает все проблемы, связанные с накоплением сегрегационного груза.

1 ... 11 12 13 ... 81
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Перспективы отбора - Елена Наймарк», после закрытия браузера.

Комментарии и отзывы (0) к книге "Перспективы отбора - Елена Наймарк"