Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » О том, чего мы не можем знать. Путешествие к рубежам знаний - Маркус Дю Сотой

Читать книгу "О том, чего мы не можем знать. Путешествие к рубежам знаний - Маркус Дю Сотой"

299
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 104 105 106 ... 124
Перейти на страницу:

Доказательство – это логическое повествование, уводящее читателя из места, ему известного, в новые, еще неизведанные дали. Подобно приключениям Фродо во «Властелине колец» Толкина, доказательство есть описание путешествия из Шира в Мордор. В пределах давно знакомого Шира находятся математические аксиомы, самоочевидные истины о числах и уже доказанные положения. Они образуют тот пейзаж, с которого начинается странствие. Путешествие, начинающееся с этой привычной территории, происходит по правилам математической дедукции, подобным правилам шахматных ходов, которые определяют, как мы можем перемещаться по этому миру. Время от времени мы можем заходить в тупик и быть вынуждены отклоняться в сторону или даже возвращаться назад, чтобы найти обходной путь. Иногда для продолжения такого путешествия приходится ждать появления новых математических персонажей – например мнимых чисел или методов дифференциального исчисления. Доказательство – это рассказ о путешествии и карта, на которой отмечены координаты этого путешествия. Путевой дневник математика.

Чтобы такое путешествие заняло свое место в математическом эпосе, ему недостаточно достичь истинного утверждения о числах или геометрических фигурах. Оно должно поражать, восхищать, эмоционально затрагивать своего читателя. В нем должны быть опасности и драматическое напряжение. Математика отличается от собрания истинных утверждений о числах так же, как литература не сводится к набору всех возможных сочетаний слов, а музыка – к коллекции всех возможных последовательностей нот. Математика требует применения эстетической оценки и выбора. И наверное, именно поэтому искусство математического доказательства развилось в эпоху расцвета повествования. Возможно, доказательство не в меньшей степени было порождено пафосом, эмоциональной стороной риторики Аристотеля, чем ее логосом, то есть рациональным аспектом.

Числа на грани

Хотя многие из первых геометрических доказательств конструктивны, древние греки также использовали свои новые математические инструменты для доказательства невозможности, непознаваемости некоторых вещей. Мы уже видели один яркий пример такого доказательства: квадратный корень из 2 не может быть выражен в виде отношения двух целых чисел.

Это доказательство обладает большой нарративной силой: оно увлекает читателя в путешествие, исходя из предположения, что длина диагонали может быть выражена в виде дроби. По мере невинного на вид развития сюжета мы все дальше и дальше углубляемся в кроличью нору этой истории, пока наконец не доходим до совершенно абсурдного вывода: четные числа есть числа нечетные и наоборот. Мораль сей басни заключается в том, что предполагаемая дробь, выражающая искомую длину, может быть лишь иллюзией. Для желающих совершить путешествие вниз по кроличьей норе эта история изложена в рамке на следующей странице.

Тем, кто впервые встречался с числом, подобным квадратному корню из двух, оно должно было казаться объектом, который по самой своей природе не подлежит полному познанию. Знать число означало записать его, выразить через уже известные числа. Но это число, по-видимому, не поддавалось никаким попыткам записать его значение.

Это был необыкновенный момент в истории математики – создание совершенно нового вида чисел. Можно было упорно утверждать, что уравнение х2 = 2 вообще не имеет решения. В то время числа, которые могли дать точное решение этого уравнения, не были известны. Собственно говоря, математический аппарат, достаточно сложный, чтобы придать таким числам смысл, появился только в XIX в. И все же было ощущение, что такое число существует. Его можно было видеть – вот оно, длина стороны треугольника. В конце концов математики решились добавить к нашему математическому инструментарию новые типы чисел, которые позволили нам решать такие уравнения.

Существовали и другие уравнения, казавшиеся нерешаемыми, причем их ответ был не так нагляден, как квадратный корень из двух, – и тем не менее нам удалось создать и такие решения. С современной точки зрения решение уравнения х + 3 = 1 кажется нетрудным: х = –2. Но у греков не было числа, позволяющего выразить это решение. Диофант Александрийский называл такие уравнения абсурдными. По мнению математиков, подобных Диофанту, числа были геометрическими объектами: они выражали реально существующие вещи, длины отрезков. Такого отрезка, длина которого станет равна единице после удлинения на три единицы, не существует.

Другие культуры не так легко признавали свое поражение перед лицом такого уравнения. В Древнем Китае числа использовали для подсчета денег, а там, где дело касается денег, часто возникают и долги. Легко можно представить себе обстоятельства, в которых я добавляю в свой кошелек три монеты и обнаруживаю, что в нем осталась всего одна. Две остальные монеты могли уйти на оплату долга другу. В 200 г. до н. э. китайские математики использовали для представления чисел красные палочки; однако палочки, которые использовали для подсчета долгов, были черными. Отсюда и пошла традиция записывать убытки в бухгалтерских книгах красными чернилами – только где-то по дороге цвета успели поменяться.


Доказательство иррациональности квадратного корня из 2

Пусть L – длина гипотенузы прямоугольного треугольника, длина обоих катетов которого равна 1. По теореме Пифагора, площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах. Но площадь обоих меньших квадратов равна 1, а площадь большего квадрата равна L2. Таким образом, L есть число, квадрат которого равен 2.

Предположим, что L равно отношению двух целых чисел: L = p/q.

Можно предположить, что одно из чисел p и q – нечетное. Если оба эти числа четные, числитель и знаменатель дроби можно делить на 2 до тех пор, пока одно из чисел не станет нечетным.

Из L2 = 2 следует, что p2/q2 = 2.

Умножим обе стороны равенства на q2: p2 = 2 ∙ q2.

Итак, четное число р или нечетное? Мы знаем, что р2 – четное число, поэтому и р должно быть четным, так как нечетное число в квадрате также дает нечетное число. Значит, р = 2 ∙ n для некоторого числа п. Раз р – четное число, то q должно быть нечетным. Но подождите секундочку…

2 ∙ q2 = p2 = (2 ∙ n)2 = 2 ∙ 2 ∙ n2, и, разделив обе части этого равенства на 2, мы получим: q2 = 2 ∙ n2.

Вспомним, что раньше мы выяснили, что q – нечетное число.

Значит, и q2 должно быть нечетным. Но правая часть этого уравнения равна четному числу! Итак, если длина L может быть выражена в виде дроби, то четность равна нечетности. Поскольку такой вывод явно абсурден, наше исходное предположение о возможности выразить L в виде отношения двух целых чисел должно быть ложным.

1 ... 104 105 106 ... 124
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «О том, чего мы не можем знать. Путешествие к рубежам знаний - Маркус Дю Сотой», после закрытия браузера.

Комментарии и отзывы (0) к книге "О том, чего мы не можем знать. Путешествие к рубежам знаний - Маркус Дю Сотой"