Читать книгу "Квантовая случайность. Нелокальность, телепортация и другие квантовые чудеса - Николя Жизан"
Шрифт:
Интервал:
Закладка:
P (a = b|0, 0) + P (a = b|0, 1) + P (a = b|1, 0) + P (a ≠ b|1, 1) ≤ 3.
Выражение P (a = b|x, y) читается следующим образом: вероятность того, что a равно b, при условии, что сделан определенный выбор x и y. Выражение P (a ≠ b|1, 1) читается так: вероятность того, что a отличается от b, при сделанном выборе x = y = 1. Неравенство Белла утверждает как раз то, что мы только что обнаружили, а именно что сумма всех четырех вероятностей в игре Белла, которая дает счет игры, не может быть больше 3. Для локальных корреляций неравенство Белла всегда удовлетворяется.
Справка 3. Неравенство Белла. В общем смысле вероятность P (a, b|x, y) возникает из статистической смеси различных возможных ситуаций. К примеру, первая возможная ситуация, традиционно обозначаемая λ1, может произойти с вероятностью ρ (λ1), вторая возможная ситуация λ2 – с вероятностью ρ (λ2) и так далее. Эти вероятности ρ (λ) также могут использоваться для анализа в случаях, когда мы не знаем точно реальную ситуацию. На самом деле нам даже не нужно знать вероятность наступления конкретной ситуации. Достаточно знать, что разные ситуации возникают с разной вероятностью.
Эти ситуации λ могут включать квантово-механическое состояние системы, обычно обозначаемое как ψ. То есть они могут включать всю прошлую жизнь Алисы и Боба или даже состояние всей вселенной, кроме одного – выбор x и y должен быть независим от λ. С другой стороны, λ может быть очень и очень ограничено, подобно выбору стратегий Алисы и Боба в игре Белла. Когда-то λ назвали локальными скрытыми переменными, но лучше рассматривать их как физическое состояние систем (к примеру, ящиков Алисы и Боба), описываемое любой современной или будущей теорией. Итак, неравенства Белла что-то сообщают нам о структуре любой будущей физической теории, совместимой с сегодняшними экспериментами. При этом единственное допущение относительно λ состоит в том, что они не содержат информации о выборе x и y.
Для каждой ситуации λ условная вероятность всегда может быть выражена как
P (a, b|x, y, λ) = P (a|x, y, λ) · P (b|x, y, a, λ).
Предположение о локальности позволяет утверждать, что для любой λ происходящее в приборе Алисы не зависит от происходящего в приборе Боба, что выражается как P (a|x, y, λ) = P (a|x, λ) и наоборот: P (b|x, y, a, λ) = P (b|y, λ).
В итоге допущение, лежащее в основе всех неравенств Белла, может быть найдено путем усреднения по всем возможным ситуациям λ:
где ρ (λ) означает вероятность наступления ситуации λ.
До сих пор мы считали, что ящики Алисы и Боба содержат предустановленные программы, которые определяют результаты как следствие выбора x и y. (В информатике x и y называются входными данными). Но что будет, если эти программы не полностью определяют результат, но оставляют некоторое место случаю? Представим себе, например, что время от времени прибор Алисы случайно выбирает, исполнять ли ему программу № 1 или программу № 3, или же он время от времени просто выдает случайный результат. Можно ли это помочь им выиграть в игру Белла?
Нужно отметить, что выдать случайный результат – это, в сущности, то же самое, что осуществить случайный выбор между программой № 1 (которая выдает a = 0) и программой № 2 (которая выдает a = 1). Оказывается, эта стратегия бесполезна. Игра Белла подразумевает большое количество повторений и расчетов средних значений. Если в данную минуту прибор Алисы случайно выбирает одну программу из некоторого набора программ, то счет игры не будет отличаться от того, что мы получили бы, если бы ящик в каждую минуту использовал одну конкретную программу, выбранную случайным образом из этого набора. Учитывая, что в каждую минуту ящики используют одну специфическую программу, это не является ограничением. Введение случайных стратегий никак не поможет Алисе и Бобу выиграть игру Белла; на самом деле наоборот. Как мы уже видели, если приборы Алисы и Боба независимо производят случайные результаты, они получают только 2 очка.
Подводя итог, скажем, что никакая локальная стратегия не поможет выиграть в игру Белла более чем три раза из четырех. Как сказал бы физик, никакая локальная корреляция не может нарушить неравенство Белла. Другими словами, если бы Алиса и Боб все же сумели выиграть более часто, чем три раза из четырех, этому явлению не было бы локального объяснения.
Как мы уже знаем, существует только два типа локальных объяснений: первый основан на непрерывном распространении воздействия от одной точки к другой через пространство, а второй основан на существовании общей причины, что также подразумевает непрерывное распространение воздействия в пространстве из некоего общего момента в прошлом. В нашем случае объяснения первого типа исключаются огромным расстоянием между Алисой и Бобом и, как мы только что видели, объяснение второго типа не позволяет выиграть в игру Белла более чем три раза из четырех.
Теперь представим, что Алиса и Боб играют очень давно и выигрывают в среднем гораздо чаще, чем три раза из четырех. Как раз это и становится возможным благодаря явлению запутанности в квантовой физике. Но пока мы отложим этот поразительный раздел физики в сторону и просто рассмотрим гипотезу о том, что Алиса и Боб выигрывают очень часто.
Мы уже исключили возможность их влияния друг на друга или какой-либо связи между их приборами даже посредством каких-либо еще не открытых волн (к этой важной гипотезе мы вернемся позже). Мы только что видели, что если приборы производят результат локально в зависимости от времени и положения джойстика, а значит, в зависимости от выбора оператора, то выиграть более, чем три раза из четырех невозможно. Другими словами, невозможно выиграть более, чем три раза из четырех, если пользоваться локальными стратегиями, что означает использование механизма последовательного распространения от точки к точке сквозь пространство.
Именно поэтому корреляции, которые позволяют выигрывать в игру Белла чаще, чем три раза из четырех, называют нелокальными. Но как Алиса и Боб могут сделать это со своими ящиками?
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Квантовая случайность. Нелокальность, телепортация и другие квантовые чудеса - Николя Жизан», после закрытия браузера.