Онлайн-Книжки » Книги » 🤯 Психология » Искусство думать. Латеральное мышление как способ решения сложных задач - Эдвард де Боно

Читать книгу "Искусство думать. Латеральное мышление как способ решения сложных задач - Эдвард де Боно"

306
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 9 10 11 ... 32
Перейти на страницу:

Хотя рис. 8 и подсказал возможность выделения Т-образного элемента, его создание было совершенно произвольным шагом. Единожды возникнув, Т-образный элемент подтверждает свою полезность в объяснении других фигур, изображенных на рис. 11–14. Гибкость и широкая применимость Т-образного элемента дают ему право на самостоятельное существование.

Однако, каким бы удобным ни было деление фигур на Т-образные элементы, нельзя утверждать, что они были составлены из таких Т-образных частей изначально.

Если бы для описания геометрической фигуры, показанной на рис. 8, был выбран какой-то другой способ деления, он мог бы оказаться превосходным для описания этой конкретной фигуры, но совершенно непригодным для выделения составных частей при описании остальных фигур. Представленную на рис. 8 фигуру вполне можно описать так: горизонтальный брусок, поддерживаемый в центре более короткой вертикальной стойкой, которая покоится, в свою очередь, на втором, более длинном горизонтальном бруске, поддерживаемом еще двумя вертикальными стойками, чуть сдвинутыми от концов бруска к центру. Это описание правомерно в той же степени, что и деление на Т-образные элементы. Таким образом, два описания могут быть в равной степени пригодны, но их полезность в широком плане может оказаться совершенно различной. Если удовлетворение пригодностью одного описания приведет к отказу от поисков других (возможно, более адекватных) описаний, то прогресс остановится.

Предположим, что для описания фигуры на рис. 8 мы выбрали подход с горизонтальными брусками и стойками, а затем, обратившись к рис. 7, обнаружили наличие Т-образного элемента. Многие люди просто примут это к сведению и двинутся дальше. Но кто-то вернется к рис. 8, чтобы проверить, можно ли применить Т-образный элемент при описании представленной там фигуры. Этот шаг может показаться очевидным, но на практике не является ни очевидным, ни типичным. Многие ли сознательно пойдут на то, чтобы в свете новой информации пересмотреть все то, чему уже найдено подходящее объяснение? С какой стати следует расценивать Т-образный элемент, возникший в одном из разложений, как достаточно полезный для того, чтобы попытаться использовать его вместо имеющегося объяснения фигуры на рис. 8? Да, значимость Т-образного элемента возрастает с каждым следующим успешным его применением, однако поначалу он ничуть не важнее любого другого элемента, полученного в ходе деления фигуры. Много ли людей будут готовы отказаться от первоначального, вполне адекватного объяснения ради другого, которое не является в большей степени адекватным?

Те, кто привык к подобным переосмыслениям, не удивятся, обнаружив, что исходную фигуру (рис. 1) тоже можно представить с помощью Т-образных элементов (рис. 15 и 16).




Трактовка фигуры, показанная на рис. 16, ведет нас к еще одному важному выводу. Если бы нам представили исходную фигуру, воспроизведенную на рис. 15, только после того, как Т-образный элемент стал для нас привычным, мы не задумываясь разделили бы ее на такие элементы. Мы бы не стали рассматривать другие способы деления и, возможно, даже сопротивлялись бы их появлению. Очень легко забыть о том, что, сколь бы адекватным ни было деление на Т-образные элементы, оно произвольно и зависит от человека, а потому не может исключать другие способы описания (или объяснения), которые могут оказаться даже более полезными.

С ростом известности Т-образного элемента крепнет искушение рассматривать деление на такие элементы как более обоснованное по сравнению с любым другим. При каждом новом удачном использовании Т-образного элемента его позиции становятся все сильнее. Чем более полезным представляется элемент, тем чаще он используется, а чем чаще он используется, тем более полезным кажется.

Гибкость и полезность Т-образного элемента приводят к тому, что мы начинаем рассматривать другие фигуры как различные сочетания таких основных элементов. Каждая новая фигура дает свою картину соотношений Т-образных элементов. Может показаться, что эти соотношения были выведены из формы фигуры как таковой, однако в действительности они созданы под влиянием склонности искать в фигуре Т-образные элементы. Благодаря постоянному использованию Т-образного элемента количество его возможных сочетаний продолжает расти, хотя сам он остается неизменным. Кроме того, постепенно накапливаются незнакомые фигуры, которые стали знакомыми благодаря применению Т-образных элементов.

На рис. 17 изображена довольно сложная фигура, описание которой неизбежно потребует разбивки на знакомые элементы. Разобрать эту фигуру на Т-образные блоки весьма непросто. Однако если у нас нет никакого другого известного элемента деления, кроме Т-образного, то мы будем вынуждены пытаться составить описание на основе таких элементов, несмотря на все трудности.



На рис. 18 как раз и показано такое удачно выполненное деление. Оно полное – то есть на Т-образные элементы разбита вся фигура. Может показаться, что полнота деления служит оправданием именно такого принципа деления. Однако деление все равно остается совершенно произвольным. Запас знакомых фигур – это личная черта, и ограниченность этого запаса не может служить ограничением для способов, которыми могут описать фигуру другие люди, имеющие другой запас знакомых фигур.

Если на основе Т-образного деления, показанного на рис. 18, мы попытаемся описать фигуру на рис. 17, то вскоре обнаружим, что передать словами множество разнообразных соотношений, определяющих расположение Т-образных элементов на этой фигуре, не такая простая задача. И хотя Т-образный элемент сам по себе несложен, его соотношения в данной фигуре настолько сложны, что их описание становится почти невозможным.




На рис. 19 также изображена значительно более простая фигура, которая тем не менее все еще довольно сложна. Можно опять попробовать описать ее с помощью Т-образных элементов и лишний раз убедиться, что такое описание вполне осуществимо. Однако соотношение Т-образных элементов при таком описании будет по-прежнему сложным.

Описание можно упростить, если фигуру разделить не на Т-образные, а на I-образные элементы, как это показано на рис. 20. Взаимоотношение трех получившихся при этом I-образных элементов очень простое. Разумеется, каждый из I-образных элементов представляет собой два Т-образных элемента, соединенных основаниями.

1 ... 9 10 11 ... 32
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Искусство думать. Латеральное мышление как способ решения сложных задач - Эдвард де Боно», после закрытия браузера.

Комментарии и отзывы (0) к книге "Искусство думать. Латеральное мышление как способ решения сложных задач - Эдвард де Боно"