Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » Совместимость. Как контролировать искусственный интеллект - Стюарт Рассел

Читать книгу "Совместимость. Как контролировать искусственный интеллект - Стюарт Рассел"

120
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 9 10 11 ... 94
Перейти на страницу:



Чтобы прояснить, зачем нам нужна теория игр, рассмотрим простой пример: Алиса и Боб играют во дворе в футбол (рис. 3). Алиса готовится пробить пенальти, Боб стоит на воротах. Алиса собирается направить мяч справа или слева от Боба. Поскольку она правша, для нее проще и надежнее бить вправо от Боба. У Алисы мощный удар, и Боб знает, что должен броситься в одну либо в другую сторону — у него не будет времени подождать и узнать, куда летит мяч. Боб мог бы рассуждать так: «У Алисы больше шансов забить гол, если она пробьет справа от меня, поскольку она правша, значит, это она и выберет, и мне нужно броситься вправо». Однако Алиса не дурочка, она может представить этот ход рассуждений Боба и тогда пробьет влево. Поскольку Боб тоже не дурак и поймет, что замыслила Алиса, то бросится влево. Но Алиса умна и способна представить, что Боб думает именно так… В общем, вы поняли. Иными совами, если у Алисы есть рациональный выбор, Боб тоже может его обнаружить, предвосхитить и помешать Алисе забить гол, так что выбор, в принципе, не может быть рациональным.

Еще в 1713 г. — опять-таки в ходе анализа азартных игр — был найден выход из этого затруднительного положения[33]. Хитрость состоит в том, чтобы выбирать не какое-либо действие, а рандомизированную стратегию. Например, Алиса может выбрать стратегию «бить правее Боба с вероятностью 55 % и левее с вероятностью 45 %». Боб может выбрать «кидаться вправо с вероятностью 60 % и влево с вероятностью 40 %». Каждый мысленно бросает монету с соответствующей тенденцией перед каждым действием, чтобы не отклониться от своих намерений. Действуя непредсказуемо, Алиса и Боб избегают ограничений, описанных в предыдущем абзаце. Даже если Боб выяснит, в чем состоит рандомизированная стратегия Алисы, он бессилен справиться с ней, если у него нет «хрустального шара».

Следующий вопрос: какими должны быть вероятности? Рационален ли выбор Алисы, 55 % на 45 %? Конкретные значения зависят от того, насколько выше точность Алисы при ударе направо от Боба, насколько успешно Боб берет мяч, когда кидается вправо, и т. д. (Полный анализ см. в сносках[34].) Общий критерий, впрочем, очень прост:

1. Стратегия Алисы — лучшая, которую она может выбрать при условии, что Боб неподвижен.

2. Стратегия Боба — лучшая, которую он может выбрать при условии, что Алиса неподвижна.


Если выполняются оба условия, мы говорим, что стратегии находятся в равновесии. Такого рода равновесие называется равновесием Нэша в честь Джона Нэша, который в 1950 г. в возрасте 22 лет доказал, что оно существует для любого числа агентов с любыми рациональными предпочтениями, независимо от правил игры. После нескольких десятилетий борьбы с шизофренией Нэш выздоровел и в 1994 г. получил за эту работу Нобелевскую премию за достижения в экономических науках.

В футбольном матче Алисы и Боба равновесие лишь одно. В других случаях их может быть несколько. Таким образом, концепция равновесия Нэша, в отличие от решений на основе ожидаемой полезности, не всегда ведет к уникальным рекомендациям о том, как действовать.

Что еще хуже, бывают ситуации, когда равновесие Нэша может приводить к крайне нежелательным результатам. Одним из таких случаев является знаменитая «дилемма заключенного», название которой дал в 1950 г. научный руководитель Нэша Альберт Таккер[35]. Игра представляет собой абстрактную модель печально распространенных в реальном мире ситуаций, когда взаимодействие было бы лучше во всех смыслах, но люди тем не менее выбирают взаимное уничтожение.

Вот как работает «дилемма заключенного». Алиса и Боб подозреваются в преступлении и оказываются в одиночном заключении. У каждого есть выбор: признать вину и заложить подельника или отказаться давать показания[36]. Если оба откажутся, то будут обвинены в менее серьезном преступлении и отсидят два года; если оба сознаются, то получат более серьезное обвинение и сядут на 10 лет; если один сознается, а второй запирается, то сознавшийся выходит на свободу, а второй садится на 20 лет.

Итак, Алиса размышляет: «Если Боб решит признаться, то и мне следует признаваться (10 лет лучше, чем 20); если он планирует запираться, то мне лучше заговорить (выйти на свободу лучше, чем провести два года в тюрьме); так или иначе, нужно признаваться». Боб мыслит так же. В результате оба дают признательные показания и сидят 10 лет, тогда как, совместно отказавшись признавать вину, они могли бы отсидеть только два года. Проблема в том, что совместный отказ не является равновесием Нэша, потому что у каждого есть стимул предать другого и освободиться путем признания.

Заметьте, что Алиса могла бы рассуждать следующим образом: «Как бы я ни мыслила, Боб тоже будет размышлять. В конце концов мы выберем одно и то же. Поскольку совместный отказ лучше совместного признания, нам нужно молчать». Эта разновидность рассуждения признает, что, будучи рациональными агентами, Алиса и Боб сделают согласующийся выбор, а не два независимых. Это лишь один из многих подходов, опробованных в теории игр в попытке получить менее удручающие решения «дилеммы заключенного»[37].

1 ... 9 10 11 ... 94
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Совместимость. Как контролировать искусственный интеллект - Стюарт Рассел», после закрытия браузера.

Комментарии и отзывы (0) к книге "Совместимость. Как контролировать искусственный интеллект - Стюарт Рассел"