Читать книгу "О происхождении времени. Последняя теория Стивена Хокинга - Томас Хертог"
Шрифт:
Интервал:
Закладка:
Однако ум одного из величайших научных революционеров XX столетия с новой квантовой механикой смириться никак не мог. Эйнштейн приехал на Пятый Сольвеевский конгресс в состоянии глубокой неудовлетворенности квантовой теорией. Он отклонил приглашение Лоренца сделать доклад и, как рассказывали, во время конференции был молчалив. Однако споры шли не только на заседаниях. Все ученые жили в одном отеле, и там, за общим обеденным столом, Эйнштейн вел себя гораздо свободнее. Нобелевский лауреат Отто Штерн оставил нам свидетельство очевидца: «Эйнштейн спускался к завтраку и тут же принимался высказывать свои опасения по поводу новой квантовой теории. Он каждый раз выдумывал прекрасный мысленный эксперимент, из которого было видно, что в самом сердце теории заключено логическое несоответствие… Бор внимательно выслушивал его, а вечером, за ужином, подробно разъяснял суть противоречия и указывал выход из него»[160].
Эйнштейн резко выступал против квантовомеханической идеи, что частица могла оказаться в определенном месте, когда ее наблюдают, но имела только некоторую вероятность оказаться в той или иной точке, когда не подвергалась наблюдению. «Физика есть попытка воспринять реальность такой, какова она есть, независимо от того, наблюдаем мы эту реальность, или нет»[161], – возражал он. В шутку он спрашивал, необходимо ли наблюдателю быть человеком, чтобы частица заняла определенное положение, или будет достаточно, если на нее случайно посмотрит, скажем, мышка.
ИСТОРИЯ ВСЕЛЕННОЙ ЗАВИСИТ ОТ ВОПРОСА, КОТОРЫЙ ВЫ ЕЙ ЗАДАЕТЕ.
Рис. 40. Нильс Бор и Альберт Эйнштейн на Шестом Сольвеевском Конгрессе в Брюсселе (Бельгия), 1930 г.
Вероятностная природа квантовой механики была для Эйнштейна сигналом неполноты теории. Он считал, что должен существовать более глубокий уровень описания, который давал бы объективное и адекватное представление физической реальности, безотносительно к каким-либо актам наблюдения. «[Квантовая] теория дает прекрасные результаты, но вряд ли делает нас ближе к разгадке Его секретов, – писал он Борну. – Как бы там ни было, я убежден, что Он не играет в кости»[162]. В противоположность Эйнштейну Нильс Бор, который был так же силен в философии, как и в математике, интуитивно был глубоко убежден, что квантовая механика непротиворечива. Бор серьезно принимал центральное положение квантовой теории: акт наблюдения – тот самый вопрос, который мы задаем Природе, – влияет на то, как именно Природа проявляет себя. Он придерживался принципа «никакое явление не является реальным, пока оно не станет наблюдаемым».
И вышло так, что на Пятом Сольвеевском конгрессе был сделан первый шаг в одном из величайших научных споров XX века: в споре Эйнштейна с Бором. Что было на кону? Судьба квантовой революции.
Один из аспектов их спора касался ключевого вопроса о причинности и детерминизме в физике. Квантовая механика со своими случайными скачками и вероятностными предсказаниями очевидным образом разрушает столь знакомую нам по классической физике прямую причинную связь между тем, где мы находимся сейчас и где мы окажемся в следующий момент. Является ли этот недостаток причинности и детерминизма в нашем описании Природы лишь временным техническим обстоятельством (позиция Эйнштейна) или фундаментально новым свойством физической теории (позиция Бора)?
Но дискуссия затрагивала и более глубокую онтологическую сторону квантовой механики. В ответ на возражения Эйнштейна Бор был вынужден прояснить, что именно побуждает волновые функции в квантовой механике переходить от туманных и смутных наложений различных реальностей к вполне определенной реальности ежедневного опыта. Мы не наблюдаем никаких наложений реальностей: экспериментаторы находят частицы либо здесь, либо там, но не здесь и там одновременно. Как же именно это происходит? Дерзкий ответ, который давала на этот вопрос копенгагенская школа Бора, заключался в том, что этот переход происходит из-за самого вторжения в реальность экспериментатора. Бор полагал, что сам акт измерения вынуждает Природу определиться и проявить ту или другую реальность. Когда мы измеряем, к примеру, положение частицы, мы воздействуем на нее – скажем, направляя на нее лазерный луч. Это воздействие, утверждал Бор, вызывает коллапс распределенной в пространстве волновой функции частицы, приводя ее к пику в единственном из ее бесчисленных возможных положений – в наблюдаемом. Выключим лазер – и волновая функция снова распространится повсюду, непрерывно и плавно изменяясь от точки к точке в соответствии с уравнением Шрёдингера, что я и описал в главе 3. Возвратимся к измерениям – и волновая функция частицы снова сконцентрируется в состояние с определенным положением.
Неувязкой схемы Бора было то, что эти внезапные коллапсы совершенно не согласуются с уравнением Шрёдингера. Волновые функции, которые подчиняются этому уравнению, не могут резко коллапсировать – они непрерывно колеблются, все время оставаясь гладкими и непрерывными. Получалось, что своей интерпретацией того, что происходит во время акта наблюдения, Бор приписывал наблюдателям и их измерениям особую роль, что совершенно не вписывалось в математические рамки теории.
Копенгагенская схема сводится к так называемой инструменталистской интерпретации квантовой теории. Она предполагает существование фундаментального расхождения между тем, что мы способны измерить нашими инструментами, и описываемой уравнениями физической реальностью. «Наши измерения имеют такое же отношение к тому, что они измеряют, какое телефонный номер имеет к его абоненту», – как однажды выразился по поводу копенгагенской схемы Эддингтон[163]. Но такой инструменталистский подход создает глубокую эпистемологическую проблему – что же тогда в действительности описывает квантовая механика? Копенгагенская интерпретация на эту загадку никакого света не проливает. По сути, она стремится вообще уклониться от этого вопроса, настаивая на четком разделении между квантовым миром атомов и субатомных частиц – миром, управляемым уравнением Шрёдингера, – и внешней фоновой реальностью, в которой находятся макроскопические экспериментаторы со своими приборами, да и вся остальная Вселенная, подчиняющаяся классическим законам. Коллапс волновой функции в ходе «акта измерения» был мостиком, который Бор перебрасывал между этими двумя обособленными мирами, – примерно так же, как антропный принцип позволяет выбрать островную вселенную в мультивселенной. Обе эти операции были предназначены для связи объективного математического формализма с физическим миром наших наблюдений – но обе не сработали, потому что создаваемые ими соединительные арки оставались внешними по отношению к структуре теорий, которые эти операции призваны были завершить.
Бор и Эйнштейн много лет оттачивали свои аргументы в этом споре, но так никогда и не пришли к согласию. Подводя его итог, мы высоко ценим глубокую идею Бора о том, что процесс наблюдения играет ключевую роль в обуславливании физических явлений в квантовой Вселенной. С другой стороны, его описание этого процесса в терминах резкого коллапса волновой функции глубоко несостоятельно. Сегодня все говорит за то, что математический аппарат Шрёдингера приложим не только к микроскопическим коллективам из
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «О происхождении времени. Последняя теория Стивена Хокинга - Томас Хертог», после закрытия браузера.