Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » E=mc2. Биография самого знаменитого уравнения в мире - Дэвид Боданис

Читать книгу "E=mc2. Биография самого знаменитого уравнения в мире - Дэвид Боданис"

182
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 59 60 61 ... 85
Перейти на страницу:

Однако просто заявить, что выражение 1/√(1-v2/с2) дает нам правило, которому мы обязаны следовать, значит поместить нас в ту самую категорию послушно выполнявших правила учителей, которые так возмущали Эйнштейна. Объяснения насчет того, почему это правило истинно, можно получить на сайте davidbodanis.com.

С. 31 …энергия, накачиваемая в… обращается в добавочную массу: Пример с космическим кораблем является всего лишь эвристическим; продвигаясь дальше по этой книге, мы увидим, что энергия и есть масса: единая сущность, именуемая «энергия-масса» просто принимает различные обличия, зависящие от того, как мы ее наблюдаем. Ограниченность наших хрупких тел означает, что мы не в силах существенно увеличивать скорости нашего движения, поэтому мы наблюдаем массу под очень «косым» углом. Возникающее в результате искажение и составляет причину, по которой «высвобождающаяся» энергия кажется нам столь высокой. (Существенная оговорка состоит, однако, в том, что эквивалентность энергии и массы остается справедливой только для частного наблюдателя, относительно которого это тело покоится. И это приобретает особое значение в общей теории относительности, поскольку создаваемая телом сила притяжения определяется его полной энергией, а не просто массой покоя. Это обстоятельство затрагивается на странице 110 книги в связи с черными дырами и более подробно обсуждается на моем веб-сайте.


Глава 6. 2 — это «в квадрате»


С. 34 «наблюдал за их трудами»: «Voltaire et la Societé Francaise au XVIII è Siècle: Volume 1, La jeunesse de Voltaire», by Gustave Desnoiresterres (Paris: Dider et Cie, 1867), p. 345.

С. 34 …в воздухе Англии носились новые, приведшие его в восторг, концепции: Для того, чтобы осознать недостатки Франции, Аруэ труды Ньютона не требовались. Да и в любом случае, показать, чего не хватает Франции, ему помогли не отвлеченные идеи, но наблюдения за Англией с работающим в ней парламентом и с ее традициями наполовину, по крайней мере, независимых судей и гражданских прав. Однако возможность ссылаться в своей критике Франции на самую прославленную в мире аналитическую системы была приятной. См. «Английские письма» Вольтера.

С. 34 Ньютон создал совокупность законов…: Как это ни удивительно, похоже, что к его последнему шагу Ньютона действительно подтолкнуло наблюдение за падением яблока. Уильям Стакели записал воспоминания престарелого Ньютона и два столетия спустя эти записи были изданы как «Memoirs of Sir Isaac Newton's Life»[47] (London: Taylor amp; Francis, 1936), pp. 19–20.

После обеда, поскольку погода была теплой мы вышли в сад [последней резиденции Ньютона в лондонском Кенсингтоне] и пили чай, только он и я, в тени яблонь. Среди прочего, он рассказал мне, что когда-то именно в таком же случае ему и пришла в голову мысль о тяготении. Ее породило падение яблока, за которым он, погруженный в задумчивость, наблюдал. Почему яблоки всегда должны падать… в направлении центра Земли? Причина, несомненно, состоит в том… что в материи должна присутствовать притягивающая их сила… подобная той, которую мы называем здесь тяготением, распространяющимся по вселенной.

Так Ньютон обрел уверенность в том, что на Земле действуют те же силы, что и в космосе. Измерить скорость, с которой тело падает на землю, довольно легко. За одну секунду яблоко — или любое другое тело — падает примерно на 5 метров. Но как измерить скорость, с которой «падает» Луна?

Для того, чтобы проделать это, необходимо признать, что Луна постоянно падает вниз — хотя бы немного. (Если бы Луна не падала, а всего лишь двигалась по идеально прямой линии, она быстро оторвалась бы от нашей планеты.) Величины этого «падения» как раз достаточно для того, чтобы заставить Луну кружить вокруг Земли. Зная протяженность ее орбиты и время, которое уходит на один оборот, можно заключить, что каждую секунду она падает в направлении Земли чуть больше, чем на 0,13 см.

На первый взгляд из этого следовало, что догадка Ньютона была неверна. Если существует некая сила, заставляющая камень за одну секунду падать в направлении Земли на 5 метров, следует заключить, что в космосе действует сила совсем иная, ибо она заставляет гигантские камни наподобие Луны падать каждую секунду на какие-то жалкие 0,13 см. Даже если учесть куда большее расстояние, отделяющее нас от Луны, идея Ньютона все равно не срабатывает. Земля имеет в поперечнике около 12742 км, стало быть, Ньютон, как и яблони его матери, отстоят от ее центра примерно на 6371 км. Луна отстоит от центра Земли на 384400 км, т. е. находится примерно в 60 раз дальше. Но даже если замедлить падение камня в 60 раз, он все равно будет падать далеко не так медленно, как Луна. (1/60 от 6 м это 8 с небольшим см, что намного превышает ничтожные 0,13 см, на которые каждую секунду падает Луна.)

Но что если представить себе силу, которая, уходя от нашей планеты, ослабевает в 60х60 раз? Идея о том, что сила притяжения зависит от квадрата расстояния, весьма интересна, вот только как ее проверить? Как доказать, что на Земле она в 3600 (60х60) раз сильнее, чем в космосе. В семнадцатом веке никто — даже кембриджский ученый — не мог слетать на Луну и сравнить силу притяжения Земли на ней, с той, что действует на самой Земле. Однако в этом не было необходимости. Уравнения обладают безмерной мощью. Ответ имелся у Ньютона с самого начала. «Почему яблоки всегда должны падать… в направлении центра Земли?» — спрашивал он. На поверхности Земли яблоко, камень и даже изумленный кембриджский профессор пролетают, падая, 5 м в секунду. А Луна падает за то же время на 0,13 см. Разделите одно число на другое и вы получите отношение, показывающее, насколько сила притяжения на поверхности Земли больше, чем она же на орбите Луны.

Она больше примерно в 3600 раз.

Таким был расчет, поделанный Ньютоном в 1666 году. Вообразите гигантские часы, деталями которых являются Земля и Луна. Правило Ньютона показывает, причем точно, каким образом незримые винтики и стержни поддерживают целостность этой хитроумной, состоящей из кружащих частей машины. Каждый, кто читает Ньютона и следует ходу его мысли, может поднять взгляд к небу и понять — впервые, что его тело притягивает к Земле та же сила, которая, распространяясь в пространстве, достигает орбиты Луны и уходит дальше.

С. 35 «Моя младшая дочь щеголяет своим умом…»: Samuel Edwards, «The Divine Mistress»[48] (London: Cassell, 1971), p. 12.

С. 36 …садясь за игорный стол, она с легкостью запоминала все карты: Но даже это делалось ею, по мнению родных, неправильно: «Моя дочь безумна, — в отчаянии писал ее отец. — На прошлой неделе она выиграла в карты более двух тысяч золотых луидоров и, заказав новые платья,… потратила другую половину на новые книги… Она никак не поймет, что ни один благородный дворянин не женится на женщине, которую каждый день видят читающей книгу». Там же, р. II.

С. 36 «Я устал от праздной, полной вздорных свар парижской жизни…»: «Мемуары» Вольтера; в Edwards, «The Divine Mistress») p. 85.

1 ... 59 60 61 ... 85
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «E=mc2. Биография самого знаменитого уравнения в мире - Дэвид Боданис», после закрытия браузера.

Комментарии и отзывы (0) к книге "E=mc2. Биография самого знаменитого уравнения в мире - Дэвид Боданис"