Читать книгу "Путешествие по системному ландшафту - Гарольд Лоусон"
Шрифт:
Интервал:
Закладка:
На протяжении 20-го века в области исследования систем был получен ряд ключевых результатов. В частности, во время Второй мировой войны и после нее возросло осознание важности изучения и понимания сложных сущностей, состоящих из множества элементов. Это движение становится всё более активным и привлекает всё больше внимания исследователей и практиков. Принимая во внимание сложность современного общества, можно задать вопрос: Почему для того, чтобы добиться концентрации внимания на этой жизненно важной области, понадобилось так много времени? Существует ли активное системное движение? Как оно осуществляется?
Сосредоточение внимания на целостных, холистических свойствах сущностей не является чем-то новым. В самом деле, греческие философы, в частности Аристотель, указывали на необходимость учета множества факторов для объяснения Вселенной. Так, работы Аристотеля по физике, логике, метафизике, этике, политике и биологии включали в себя наблюдения о необходимости принятия во внимание целостных свойств. Это первое представление о целостности сохранилось до 17-го века. Затем наступила научная революция. Под влиянием необходимости доказать или опровергнуть конкретную гипотезу в работах таких ученых, как Кеплер, Галилей, Бэкон и Декарт, начал развиваться научный метод.
Для научных методов, которые развивались начиная с 17-го века и в последующие годы, характерно стремление обособить один или несколько элементов изучаемого явления. Такое представление, сводящееся к элементам, которые могут быть изучены отдельно, и гипотезе, которая может быть доказана или опровергнута, фактически препятствовало развитию целостного системного мышления. Разумеется, были некоторые исключения, когда рассматривалось более широкое представление природного явления, что способствовало более широкому пониманию законов природы. Исаак Ньютон дал первое научное объяснение Вселенной с учетом движения Земли и Луны, что привело к изобретению им исчисления как математического инструмента. Ньютоновское представление превалировало вплоть до смены основной парадигмы в науке вследствие важных обобщений, представленных Альбертом Эйнштейном в его теории относительности.
В 20-х годах прошлого века Людвиг фон Берталанфи указал на аналогии между целостными свойствами биологических и других систем, и появилось современное системное движение. Л. Берталанфи применил свои научные наблюдения к большому количеству систем, в том числе к системам организационно-административного управления и к организациям [von Bertalanffy, 1968]. Чекланд [Checkland, 1993], а также Скиттнер [Skyttner, 2001] дают отличные исторические резюме системного мышления, а также научного движения, начавшегося с работ античных греков и развившихся в современные представления о системах.
Сегодня ясно, что активное системное движение существует. Это понятно, даже с учетом того, что сложно достигнуть однозначного понимания, что собой представляет системное движение, что включает в себя, и следует ли что-нибудь из него исключить. В данной книге мы рассмотрим некоторые из основных достижений системного движения с целью увидеть, как они отразились в теории и практической деятельности.
В данной главе мы вводим набор понятий и принципов, которые дадут вам возможность мыслить и действовать на языке систем. Понимание и использование понятий и принципов является наиболее важным аспектом данной книги, поскольку это влияет на нашу способность увидеть системные аспекты для систем любого типа и обсуждать с другими людьми проблемы и возможности, связанные с системами. Мы начнем с наиболее важной, фундаментальной концепции.
«Мы полагаем, что сущность системы – это целостность, соединение вместе различных частей и связей, которые они образуют, для получения нового целого…»
Первое фундаментальное понятие целостность[1] позволяет нам признать, что, как это и полагал фон Берталанфи, системы находятся повсюду. Понятие целостности приводит нас к двум следующим важным понятиям, а именно: структура и поведение.
Структура и поведение являются основными свойствами всех созданных человеком систем. Структура системы – статическое свойство, относящееся к компонентам системы и их связям между собой. Поведение – динамическое свойство, относящееся к воздействию, эффекту производимому системой в процессе функционирования.
Еще одно фундаментальное свойство, приписываемое системам, – это свойство эмерджентности, т. е. появления у системы новых качеств, которых не было у компонентов системы. Эмерджентность проявляется как в предсказуемом, так и в непредсказуемом поведении системы в процессе её функционирования и/или в особенностях взаимодействия со средой, в которой находится система. Это фундаментальное понятие отражено в следующей цитате Питера Чекланда.
«Целые сущности проявляют свойства, которые имеют смысл только применительно к целому, а не к его частям…»
Вездесущность систем подразумевает, что понимание системных свойств и использование систем не зависят от того, в рамках какой дисциплины рассматриваются системы. Например, в случае сложных систем коллективное понимание динамики поведения системы наряду с различными аспектами управления её жизненным циклом часто является результатом междисциплинарных усилий. Для того чтобы нейтрализовать влияние отдельной конкретной дисциплины и сосредоточиться на системном содержании, крайне важно сформировать общую, единую основу мышления и деятельности для отдельных лиц и групп, являющихся специалистами в различных областях, имеющих различную специальную подготовку и обладающих различными знаниями, квалификацией и способностями. Важные аспекты формирования такой общей, единой, унифицированной основы показаны на рис. 1.1.
Рис. 1.1. Связь науки и инженерии со структурой и поведением
Отрасли знаний, связанные с наукой и инженерией, имеют дело с фундаментальными системными концепциями структуры и поведения. Применительно к научным дисциплинам ученый наблюдает за поведением (природных или созданных людьми систем), а затем пытается найти и описать структуры (с использованием специального «языка»), которые объясняют это поведение. Применительно к инженерным дисциплинам инженер на основании потребности в достижении определенного (специфицированного) поведения, разрабатывает и проектирует структуры, которые будучи изготовленными и введенными в строй демонстрируют способность отвечать поведенческим требованиям.
Для иллюстрации разницы в подходах к структурам и поведению рассмотрим перечисленные ниже дисциплины, некоторые из которых традиционно ассоциируются с естественными науками, другие имеют слово «наука» в названии, а третьи представляют широкое разнообразие инженерных дисциплин.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Путешествие по системному ландшафту - Гарольд Лоусон», после закрытия браузера.