Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления - Алекс Беллос

Читать книгу "Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления - Алекс Беллос"

301
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 49 50 51 ... 74
Перейти на страницу:

37. ШАГАЯ ПО ТАТАМИ

38. 15 ТАТАМИ

Представленная на рисунке схема укладки татами взята из 1641-го издания самого популярного в Японии учебника математики XVII столетия под названием Jinkoki («Дзинкоки» – «Большие и малые числа»).

39. ТАТАМИ НОБА

40. КОМНАТА С ЛЕСТНИЦАМИ в углах

Пол комнаты размером 6 × 6 метров с вырезанными углами нельзя устелить семнадцатью татами. Раскрасив квадраты подобно клеткам на шахматной доске (как показано ниже), вы поймете почему. Каждый мат татами должен покрыть как серый, так и белый квадрат. Следовательно, чтобы устелить пол комнаты татами, в ней должно быть равное количество серых и белых квадратов. Но в этой комнате два дополнительных белых квадрата, поэтому решить головоломку невозможно.

Как правило, в вариациях этой задачи используются костяшки домино и усеченная шахматная доска. Можно ли выложить костями домино размером в две шахматные клетки шахматную доску с вырезанными противоположными углами? Опять же ответ «нет» – по тем же причинам.

41. КОМНАТА С ДВУМЯ ЛЕСТНИЦАМИ, РАСПОЛОЖЕННЫМИ В СЛУЧАЙНОМ ПОРЯДКЕ

Мы решим эту задачу с помощью оригинального метода, придуманного Ральфом Гомори, который в 1970-х годах был директором IBM по исследованиям и разработкам. Хотя Гомори решал вариант этой головоломки с костями домино и шахматной доской, наше доказательство будет аналогичным. Для начала нарисуйте путь, который проходит через каждый квадрат только один раз, как показано на рисунке. На втором рисунке я в произвольном порядке удалил один серый и один белый квадрат, чтобы разместить там лестницы, разделяющие этот путь на два сегмента. Каждый из сегментов должен покрывать четное количество квадратов, а значит, его можно выстелить татами. Этот аргумент верен для всех путей и любых вариантов выбора двух квадратов разных цветов.

42. ГОЛОВОЛОМКА С ДЕРЕВЯННЫМИ БЛОКАМИ

Эту задачу предложил сингапурец Джозеф Йоу Бун Вуй, автор головоломки о дне рождения Шерил (задача 21), который впервые прочитал о ней в 1980-х годах. Самое очевидное решение показано на рисунке А. Это так называемое слуховое (мансардное) окно – вертикальное окно, врезанное в скат крыши (как любезно подсказали мне многие из архитекторов). Задача решается еще двумя способами: B и C.

43. КАРТИНА НА СТЕНЕ

Эту головоломку можно решить с помощью физики (фу!) или – математики (класс!). Как и следовало ожидать, первое решение менее изящное, чем второе. Забейте два гвоздя в стену настолько близко, чтобы часть веревки была крепко зажата между ними. Сложите веревку в форме буквы W посредине так, чтобы направленный вверх кончик буквы W находился между гвоздями. Картина будет висеть, поскольку гвозди держат веревку в нужном месте. Однако если вынуть один из гвоздей, она упадет. Некрасиво, но вполне эффективно.

А вот более элегантное решение.

Впрочем, этот способ решения не один из моих любимых. Я надеялся, что вы используете для поиска ответа кольца Борромео, приняв во внимание мои прозрачные намеки на то, что эти кольца представляют собой математическую модель искомого решения. В случае удаления одного кольца два других разъединяются.

В этой головоломке три элемента – два гвоздя и веревка, и если удалить один из них, то все три тут же отделяются друг от друга. Трудность лишь в том, чтобы понять, как представить два гвоздя и веревку в виде колец Борромео, поскольку ни гвозди, ни веревка совсем на них не похожи.

Давайте еще раз поразмышляем о кольцах Борромео. Например, это могут быть круговые кольца или треугольники валькнута. Вообще-то кольца Борромео могут иметь любую форму, какую мы захотим им придать, если только они сцеплены одинаковым способом. Представьте, что каждый гвоздь – это часть жесткого кольца, которое начинается с кончика гвоздя, проходит через стену, затем поднимается вверх и возвращается в комнату, после чего замыкается в конце гвоздя. Теперь вообразите, что оба конца веревки соединяются, образуя гигантскую петлю по всей комнате. Если эти три «кольца» сцеплены тем же способом, что и кольца Борромео, то удаление одного гвоздя приведет к тому, что веревка перестанет опоясывать петлей второй гвоздь, – и задача решена.

Как же это сделать? Я сам изготовил набор колец Борромео с помощью двух пластиковых колец и веревки, как показано на рисунке ниже. Затем я разделил кольца, поместив их бок о бок (как показано на рисунке справа), как будто это гвозди на стене. Способ образования веревкой петли между кольцами представляет собой решение задачи; оно изображено на нижнем рисунке.

Обратите внимание: нас интересуют только те фрагменты каждого «кольца», которые изображены на этом рисунке, так как именно на нем показана связь между кольцами. Другие фрагменты «колец» – продолжение гвоздей, проходящее сквозь стену, или веревка, охватывающая всю комнату, – не имеют значения.

44. ПРИМЕЧАТЕЛЬНОЕ КОЛЬЦО ДЛЯ САЛФЕТОК

1 ... 49 50 51 ... 74
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления - Алекс Беллос», после закрытия браузера.

Комментарии и отзывы (0) к книге "Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления - Алекс Беллос"