Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » Восемь этюдов о бесконечности. Математическое приключение - Хаим Шапира

Читать книгу "Восемь этюдов о бесконечности. Математическое приключение - Хаим Шапира"

144
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 48 49 50 ... 56
Перейти на страницу:

Доказательство иррациональности числа π сравнительно просто; доказать же, что π – число трансцендентное, оказалось чрезвычайно трудно. Прошло еще более 100 лет, прежде чем немецкий математик Фердинанд фон Линдеман доказал в 1882 г., что π трансцендентно, то есть не является корнем какого-либо многочлена с целочисленными коэффициентами.

За несколько лет до этого, в 1873 г., французский математик Шарль Эрмит (вы заметили, как много нам встречается французских математиков?) доказал трансцендентность е – числа Эйлера{31}. Доказательство трансцендентности числа (особенно числа π) – процесс долгий и сложный, и здесь мы не станем входить в его подробности. В общем, просто представьте себе, каким образом можно получить доказательство того, что существует число, не дающее нуля ни в каком уравнении вида



Это отнюдь не простая задача!

Чтобы проиллюстрировать ее сложность, скажу только, что в настоящее время все еще неизвестно, к каким числам – алгебраическим или трансцендентным – относится π в степени π (ππ). Давид Гильберт (который, напомню, является счастливым «владельцем» бесконечной гостиницы) задавался вопросом об алгебраичности или трансцендентности числа 2√2. Сегодня мы знаем, что это число трансцендентно. Собственно говоря, доказательство этого факта – часть общей теоремы, которая называется теоремой Гельфонда – Шнайдера, утверждающей, что число ab трансцендентно, если а – любое алгебраическое число, не равное 0 или 1, а b – иррациональное алгебраическое число. При помощи этой теоремы мы можем заключить, что е в степени π (eπ) должно быть трансцендентным, так как, если вы помните, eπ = eiπ(–i) = (–1)–i.

Почему? В этом случае число (–1), стоящее на месте а, – это алгебраическое число, не равное ни 0, ни 1. На месте b стоит число, и это действительно число алгебраическое (i – корень уравнения x² + 1 = 0) и иррациональное.

Эту прекрасную теорему независимо друг от друга доказали в 1934 и 1935 гг. русский математик Александр Гельфонд и немецкий математик Теодор Шнайдер. Теорема Гельфонда – Шнайдера дала ответ на вторую часть седьмой проблемы из списка 23 нерешенных математических задач, который Гильберт представил в 1900 г. Международному конгрессу математиков, собравшемуся в Парижском университете – Сорбонне.

Таким образом, мы знаем, что оба числа 2√2 и eπ = eiπ(–i) = (–1)–i трансцендентны. С двумя числами мы разобрались, осталось бесконечное количество других.

Континуум-гипотеза и недостающая аксиома

Мы уже знаем, что мощность множества вещественных чисел больше мощности множества натуральных чисел. Но насколько она больше? И почему мы обозначаем ее ℵ? Почему бы не сказать, что кардинальное число множества вещественных чисел равно ℵ1? Казалось бы, такое обозначение было бы естественным продолжением ℵ0.

Как мы уже говорили, тот факт, что множество несчетно, не всегда означает, что его мощность равна ℵ. Отсюда возникает естественный вопрос: существуют ли множества чисел, мощность которых больше, чем ℵ0, но меньше, чем ℵ? В 1877 г. именно этим вопросом задался Георг Кантор.

В математике умение поставить вопрос должно цениться выше, чем умение разрешить его.

Георг Кантор

Кантор считал, что множеств, мощность которых больше, чем ℵ0, но меньше, чем ℵ, не существует. Другими словами, он предположил, что мощность множества вещественных чисел есть ℵ1. Эта гипотеза известна под названием «континуум-гипотеза».

КОНТИНУУМ-ГИПОТЕЗА (CH)[53]

Не существует множества с мощностью, строго промежуточной между мощностью множества целых чисел, ℵ0, и мощностью множества вещественных чисел, ℵ.

В течение многих лет и несмотря на огромные усилия математики не могли ни доказать, ни опровергнуть эту гипотезу. В знаменитом Гильбертовом списке 23 наиболее важных открытых проблем в математике она стояла первой.

Чтобы понять то историческое событие, которое привело к решению проблемы СН, нам нужно сделать шаг назад и посмотреть, что происходило в то время в геометрии. Как вы помните, геометрия по большей части основывается на системе аксиом (они же постулаты), разработанной Евклидом более 2000 лет назад и до сих пор применимой в том, что можно назвать «базовой» геометрией. Несмотря на древность этой системы, существовала давняя открытая проблема, касающаяся пятого постулата Евклида, «аксиомы параллельности прямых». Этот постулат гласит: если на плоскости есть прямая m и точка А, не лежащая на этой прямой, то через эту точку можно провести не более одной прямой, параллельной данной. По правде говоря, этот вариант пятого постулата Евклида предложил шотландский математик XVIII в. Джон Плейфер. В формулировке самого Евклида речь шла о сумме углов и не использовалось слово «параллельная». Вопрос заключался вот в чем: можно ли вывести пятый постулат из других аксиом? Другими словами, избыточна ли эта аксиома? Оказалось, что эта аксиома фундаментальна, то есть не может быть выведена исходя только из четырех других аксиом. Эта идея, вероятно, побудила математиков исследовать, как СН соотносится с аксиомами теории множеств, и рассуждения об аксиомах в конечном счете оказали влияние на теорию множеств.

С годами стало ясно, что вопросы о бесконечности должны быть очень близки к самым основам математики, и подходить к ним следует с чрезвычайной осторожностью.

В 1908 г. был создан набор аксиом, который называется системой Цермело – Френкеля (ZF). Мы уже знакомы с Цермело (это он защищал Кантора и сформулировал первую теорему теории игр); Абрахам Галеви Френкель был израильским математиком, ставшим первым деканом Математического факультета Еврейского университета в Иерусалиме. Они сформулировали свою систему, чтобы создать для теории множеств – и математики в целом – надежную основу, которая дала бы математикам строгие методы для работы с бесконечными множествами и решения некоторых задач в этой области – например парадокса Рассела. Аксиомы ZF – это попросту в высшей степени элементарные утверждения о концепции множеств, которые, как мы верим (да, верим всем сердцем!), настолько самоочевидны, что не вызывают сомнений. Вот, например, «аксиома пустого множества»:

1 ... 48 49 50 ... 56
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Восемь этюдов о бесконечности. Математическое приключение - Хаим Шапира», после закрытия браузера.

Комментарии и отзывы (0) к книге "Восемь этюдов о бесконечности. Математическое приключение - Хаим Шапира"