Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » Математика для любознательных (сборник) - Яков Перельман

Читать книгу "Математика для любознательных (сборник) - Яков Перельман"

333
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 44 45 46 ... 62
Перейти на страницу:

Но и последние случаи исключаются не вполне: они дают результат, правда, не тождественный с рассмотренными, но все же сходный с ними. Рассмотрим внимательнее, что должно получиться от умножения нашего загадочного числа на множитель больше 7, т. е. на 8, на 9 и т. д. Умножить 142857, например, на 8, мы можем так: умножить сначала на 7 и к произведению (т. е. к 999999) прибавить наше число:

142857 x 8 = 142857 x 7 + 142857 = 999999 + 142857 = 1.000.000-1 + 142857 = 1.000.000 + (142857-1).

Окончательный результат - 1142856 - отличается от умножаемого 142857 только тем, что впереди стоит еще одна 1-ца, а последняя цифра на 1-цу же уменьшена. По сходному правилу составляются произведения 142857 на всякое другое число, больше 7, - как легко усмотреть из следующих строк:

142857 x 8 = (142857 x 7) + 142857 = 1142856

142857 x 9 = (142857 x 7) + (142857 x 2) = 1285713

142857 x 10 = (142857 x 7) + (142857 x 3) = 1428570

142857 x 16 = (143857 x 7 x 2) + (142857 x 2) = 2285712

142857 x 39 = (142857 x 7 x 5) + (142857 x 4) = 5571423.

Общее правило здесь такое: при умножении 142857 на любой множитель нужно умножить лишь на остаток от деления множителя на 7; впереди этого произведения ставится число, показывающее, сколько семерок в множителе, и то же число вычитается из результата[67]. Пусть мы желаем умножить 142857 на 86. Множитель 86при делении на 7 дает в частном 12 и в остатке 4. Следовательно, результат умножения таков:

12571428 - 12 = 12571416.

От умножения 142857 x 365 мы получим (так как 365 при делении на 7 дает в частном 52, а в остатке 1):

52142857 - 52 = 52142805.

Усвоив это простое правило и запомнив результаты умножения нашего диковинного числа на множители от 2 до 6 (что весьма нетрудно - нужно помнить лишь, с какой цифры они начинаются), вы можете изумлять непосвященных молниеносно-быстрым умножением шестизначного числа. А чтобы не забыть этого удивительного числа, запомним, что оно произошло от 1/7, или - что то же самое, - от 2/14; вот вам первые три цифры нашего числа: 142. Остальные три получаются вычитанием первых трех из 9-ти:

Мы уже имели дело с такими числами - именно, когда знакомились со свойствами числа 999. Вспомнив сказанное там, мы сразу сообразим, что число 142857 есть, очевидно, результат умножения 143 на 999:

142857 = 143 x 999.

Но 143 = 13 x 11. Припомнив замеченное раньше о числе 1001, равном 7 x 11 x 13, мы будем в состоянии, не выполняя действия, предсказать, что должно получиться от умножения 142857 x 7:

142857 x 7 = 143 x 999 x 7 = 999 x 11 x 13 x 7 = 999 x 1001 = 999999

(все эти преобразования мы, конечно, можем проделать в уме).


Феноменальная семья

Задача № 40


Только что рассмотренное нами число 142857 является одним из членов целой семьи чисел, обладающих теми же свойствами. Вот еще одно такое число: 058823594117647 (0 впереди необходим). Если умножить это число, например, на 4, мы получим тот же ряд цифр, только первые 4 цифры будут переставлены в конец:

0588235294117647x4 = 2352941176470588.

Расположив цифры этого числа на ряде подвижных колец, как в предыдущем случае, - мы при сложении чисел двух колец будем получать то же число, лишь смещенное в круговом порядке:

При кольцевом расположении все три ряда, конечно, тождественны.

От вычитания чисел двух колец опять-таки получается тот же круг цифр:

Наконец, это число, как и рассмотренное ранее, состоит из двух половин: цифры второй половины являются дополнением цифр первой половины до 9.

Попробуйте найти разгадку всех этих особенностей.


Решение


Нетрудно догадаться, каким образом приведенный числовой ряд оказался столь близким родственником числа 142857; последнее число представляет собою период бесконечной дроби, равной 1/7, наше же число является, вероятно, периодом какой-нибудь другой дроби. Так и есть: наш длинный ряд цифр - не что иное, как период бесконечной дроби, получающейся от превращения в десятичную простой дроби 1/17:

1/17 = 0,(0588235294117647).

Вот почему при умножении этого числа на множители от 1 до 16 получается тот же ряд цифр, в котором лишь одна или несколько начальных цифр перенесены в конец числа. И наоборот - перенося одну или несколько цифр ряда из начала в конец, мы тем самым увеличиваем это число в несколько раз (от 1 до 16). Складывая два кольца, повернутых одно относительно другого, мы производим сложение двух умноженных чисел, например утроенного и удесятеренного - и, конечно, должны получить то же кольцо цифр, потому что умножение на 3 + 10, т. е. на 13, вызывает лишь перестановку группы цифр, незаметную при круговом расположении.

При некотором положении колец получаются, однако, суммы, немного отличающиеся от первоначального ряда. Если, например, повернем кольца так, чтобы складывать пришлось шестикратное число с пятнадцатикратным, то в сумме должно получиться число, умноженное на 6 + 15 = 21. А такое произведение, как легко догадаться, составляется уже несколько иначе, чем произведение на множитель, меньший 16. В самом деле: так как наше число есть период дроби равной 1/17, то, будучи умножено на 17, оно должно дать 16 девяток (т. е. столько, сколько их в подразумеваемом знаменателе периодической дроби), или 1 с 17 нулями минус 1. Поэтому при умножении на 21, т. е. на 4 + 17, мы должны получить четырехкратное число, впереди которого стоит 1, а от разряда единиц отнята 1. Четырехкратное же число начнется с цифр, получающихся при превращении в десятичную дробь простой дроби 4/17.

Порядок остальных цифр нам известен: 5294… Значит, 21-кратное наше число будет

1 ... 44 45 46 ... 62
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Математика для любознательных (сборник) - Яков Перельман», после закрытия браузера.

Комментарии и отзывы (0) к книге "Математика для любознательных (сборник) - Яков Перельман"