Читать книгу "Приспособиться и выжить! ДНК как летопись эволюции - Шон Кэрролл"
Шрифт:
Интервал:
Закладка:
Крысы, мыши, белки, кролики, козы и другие млекопитающие имеют единственный MWS/LWS-опсин с максимумом поглощения при длине волны 510–550 нм. Этот опсин кодируется единственным геном. Напротив, человек обладает двумя опсинами (MWS и LWS), которые кодируются двумя генами на X-хромосоме, расположенными в тандеме «голова к хвосту». Последовательности ДНК этих двух опсинов совпадают на 98 %. Столь большое сходство и ближайшее соседство этих генов говорит о том, что они возникли в результате удвоения единственного гена опсина MWS/LWS у какого-то примата-предка. Удвоение генов — довольно распространенная форма изменения последовательности ДНК; многие наши гены в ходе эволюции приобрели по несколько копий. Рост числа копий гена увеличивает количество информации, на которую может влиять естественный отбор, и достаточно часто функции этих копий со временем начинают различаться. Именно это произошло с двумя олеинами на X-хромосоме.
Наша пара опсинов, как и опсины других приматов с три-хроматическим зрением, в наибольшей степени стимулируется светом с длиной волны 530 нм (зеленый) и 560 нм (красный) — это их максимумы поглощения. Изучение функциональных свойств опсинов показало, что их спектр поглощения достаточно легко изменить путем замены определенных аминокислотных остатков. То, что у всех приматов с трихроматическим зрением максимумы поглощения белков сохранились на длине волны 530 и 560 нм, означает, что это свойство белков поддерживается естественным отбором.
Последовательности зеленого и красного пигментов различаются всего 15 аминокислотными остатками. Заменяя одну аминокислоту на другую и анализируя результат, ученые смогли установить, какие именно аминокислотные остатки отвечают за особые свойства каждого из пигментов.
По-видимому, основной вклад в различие в максимумах поглощения красного и зеленого пигментов вносят аминокислоты в положениях 180, 277 и 285. Аминокислоты, находящиеся в этих позициях в двух пигментах, а также их вклад в сдвиг максимума поглощения, представлены в табл. 4.1.
Таблица 4.1. Аминокислоты в ключевых позициях человеческих опсинов
Исследования показывают, что после удвоения гена пигмента MWS/LWS у нашего далекого предка две образовавшиеся копии стали функционировать по-разному (одна настроилась на восприятие света с диной волны 530 нм, другая — 560 нм) главным образом в результате изменения аминокислотных остатков в этих трех ключевых позициях (рис. 4.5).
Рис. 4.5. Удвоение и тонкая настройка гена опсина у человекообразных обезьян. У общего предшественника обезьян и человекообразных обезьян Старого Света произошло удвоение гена опсина. Со временем в двух копиях возникли мутации, которые привели к настройке двух опсинов на поглощение красного или зеленого цвета. Сохранению этих мутаций способствовал естественный отбор. Рисунок Лианн Олдс.
Удвоение гена красно-зеленого зрительного пигмента произошло после разделения приматов Старого и Нового Света. По-видимому, это случилось 30 млн или 40 млн лет назад, вскоре после разделения африканского и южноамериканского континентов. По-видимому, последовавшие за удвоением гена эволюционные изменения аминокислот в трех ключевых позициях предоставляли существенные преимущества. Теперь в Азии и Африке живут обезьяны только с трихроматическим зрением. Если в период возникновения цветового зрения рядом с этими обезьянами обитали и другие, не обладавшие такой способностью (что кажется вполне вероятным), то они и их потомки уже вымерли.
Конечно, мы не были свидетелями этих событий, произошедших 30 млн или 40 млн лет назад, и кто-то может возразить, что все сказанное выше — всего лишь гипотезы. Однако важная роль цветового зрения у приматов — неоспоримый факт. В частности, у диких обезьян очень редко встречается дальтонизм. У людей цветовая слепота — достаточно распространенное явление: около 8 % мужчин белой расы не различают некоторых цветов из-за аномалии генов красно-зеленых опсинов на X-хромосоме, однако в дикой природе это большая редкость. При исследовании 3153 макак дальтонизм был обнаружен лишь у трех особей (менее 0,1 %). Высокий уровень распространения дальтонизма у людей (у которых цветовое зрение, по крайней мере в настоящее время, находится под очень слабым влиянием естественного отбора) и низкий — у диких макак говорит о том, что естественный отбор поддерживает способность цветового восприятия у этих обезьян и у других видов, обладающих трихроматическим зрением.
Второе свидетельство в пользу большой экологической значимости трихроматического зрения у приматов дали наблюдения за тем, как выбирают пищу ди- и трихроматические приматы в природных условиях. Питер Лукас из Университета Гонконга, Натаниэль Домини (теперь работает в Университете Калифорнии в Санта-Крузе) и их коллеги предприняли подробное исследование пищевых привычек и предпочтений колобусов и шимпанзе в Уганде, лемуров на Мадагаскаре и паукообразных обезьян в Коста-Рике. Ученые обнаружили, что животные, обладающие трихроматическим зрением, отдают явное предпочтение более нежным красноватым листьям, которые содержат больше белка. Большинство исследованных приматов питались еще и фруктами, и цвет фруктов также имел для них значение. Однако Лукас и Домини считают, что полноценное цветовое зрение играет более важную роль в выборе листьев, особенно когда фруктов мало или они еще не поспели.
Таким образом, способность воспринимать красный и зеленый цвет, по-видимому, дает определенные преимущества. Однако красный и зеленый — это только часть видимого спектра, наиболее важная для обитателей лесов. Но животные населяют самые разные уголки планеты, в том числе моря, где способность различать красный и зеленый цвета абсолютно бесполезна.
На большие морские глубины солнечный свет проникает сквозь толщу воды, поэтому там темно. За зрение в слабом рассеянном свете отвечают фоторецепторы палочек, а опсин этих клеток называется родопсином. Родопсин человека и большинства наземных млекопитающих настроен таким образом, чтобы максимально поглощать свет с длиной волны около 500 нм.
На глубину около 200 м проникает лишь свет из узкого синего диапазона с длиной волны около 480 нм. Интересно, что родопсины глубоководных рыб и дельфинов сдвинуты в синюю область, то есть их максимум поглощения на 10–20 нм ниже максимума поглощения наземных млекопитающих. Ученые активно изучали тонкую настройку родопсина таких океанских жителей, как афалина, обыкновенный дельфин, черный дельфин, атлантический ремнезуб, солнечник и различные угри. Чтобы установить влияние отдельных аминокислотных остатков на различия между родопсинами разных видов животных, одни аминокислоты или их группы заменяли другими, обнаруженными у других видов. В частности, у афалины за сдвиг максимума поглощения родопсина на 10 нм в синюю область по сравнению с родопсинами наземных млекопитающих отвечают аминокислоты в положениях 83, 292 и 299 (рис. 4.6). Максимум поглощения родопсина ремнезуба еще сильнее сдвинут в синюю область (до 484 нм), и этот родопсин отличается от родопсина дельфина только аминокислотой в положении 299.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Приспособиться и выжить! ДНК как летопись эволюции - Шон Кэрролл», после закрытия браузера.