Читать книгу "Пространство - это вопрос времени. Эйнштейн. Теория относительности - Давид Бланко Ласерна"
Шрифт:
Интервал:
Закладка:
РИС. 10
РИС. 11
РИС. 12
Гаусс ввел новую математическую функцию, метрику (она обозначается буквой g), которая показывает расстояние до точки поверхности в зависимости от того, в каком направлении мы движемся. Как вы уже понимаете, на неровной поверхности эта информация от точки к точке меняется.
Метрику можно считать руководством по устройству поверхности, поскольку она содержит все интересующие нас данные. Когда рассматриваешь пространство из более высокого измерения, его неровности становятся заметны невооруженным взглядом, а метрическая функция позволяет нам оценить их, находясь непосредственно на поверхности.
Геометрические свойства поверхности должны быть независимы от системы координат, выбранной для ее описания, – так же, как в новостях, на какой бы язык мы их ни перевели, речь должна идти об одном и том же. Расстояние между двумя точками – это информация, которая не меняется с «переводом», то есть с изменением координат. Точки 1 и 2 находятся на разных расстояниях от точек А и В, но расстояние между ними самими не меняется, то есть, на языке алгебры, расстояние является инвариантом (рисунок 11). С помощью метрической функции возможно определить расстояние между любыми двумя точками на поверхности. Также она позволяет построить другие инварианты, например кривизну, то есть величину, выражающую, насколько отклоняется поверхность от евклидовой плоскости (рисунок 12).
Построение метрической функции
Чтобы построить метрическую функцию, Гаусс начал с расстояния между любыми двумя ближайшими точками на поверхности, координаты которых различались бы ничтожно мало. Самое элементарное понятие расстояния можно получить из теоремы Пифагора (рисунок 1). Чтобы указать, что мы можем произвольно уменьшить расстояние между точками (х1; у1) и (х2 ;у2 ), изменим обозначение Δх (измеряемая величина) на dх (дифференциальная величина) (рисунок 2). Это обозначение перестает работать, когда координаты больше не указывают на две перпендикулярные оси, х и у, либо если мы находимся на искривленной поверхности, например на поверхности шара (рисунок 3).
РИС. 1
РИС. 2
РИС.3
Чтобы расширить рамки теории, Гаусс работал с более общими координатами, и и v, и установил, что квадрат расстояния между двумя точками, разделенными бесконечно малым расстоянием (u, v) и (u + du, v + dv) определяется по формуле:
где Е, F и G – функции координат.
Чтобы измерить длину, достаточно сложить по всей длине кривой все бесконечно малые расстояния ds² , заключенные между двумя ее крайними точками. Немец Бернхард Риман не удовлетворился исследованием поверхностей в двух измерениях и расширил вопрос, поставленный Гауссом, на любое их число. В этом случае
где n может быть любым натуральным числом.
Числа g являются функциями координат. Следовательно, квадрат расстояния между двумя ближайшими точками ds² увеличивается и уменьшается по мере того, как мы перемещаемся по поверхности и обнаруживаем ее неровности.
Если сделать формулировку Гаусса более общей, как предложил Риман, получим следующее:
n = 2 x1 =u x2 =v
g12=g21=F g11=E g22=G
Совокупность функций g (метрик) отражает неровности рельефа. Их можно представить в виде квадратной матрицы из n² элементов:
Инварианты отражают объективные свойства пространства и не зависят от точки зрения, выбранной для описания поверхности. Это свойство предлагало вторую аналогию, очень заманчивую для Эйнштейна, который задавался вопросом: возможно ли, что принцип относительности продолжает действовать для систем, которые обладают ускорением одна по отношению к другой? Иными словами, если принцип выполняется в системах с постоянной скоростью, будет ли он выполняться в системах с переменной скоростью? Вспомним, что один из постулатов специальной теории относительности звучит так: «Любое физическое явление протекает одинаково во всех инерциальных системах отсчета». Этот постулат кажется связанным со следующим геометрическим принципом: «Инварианты, такие как расстояние и кривизна, одинаковы в любой системе координат». Этот параллелизм позволил Эйнштейну подойти очень близко к границе физики и геометрии.
От специальной теории относительности к общей
Немецкий математик Герман Минковский (1864-1909) подготовил почву для того, чтобы выразить идеи Эйнштейна на языке Гаусса. Он предложил четырехмерное псевдоевклидово пространство в качестве геометрической интерпретации пространства-времени специальной теории относительности. Минковский сделал не лишенное театральности заявление: «Отныне пространство и время по отдельности отступают на второй план, и лишь их единый континуум будет рассматриваться как независимая реальность». Аналогичную операцию он провел и с тремя пространственными координатами – шириной, глубиной и высотой.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Пространство - это вопрос времени. Эйнштейн. Теория относительности - Давид Бланко Ласерна», после закрытия браузера.