Читать книгу "Формирование системы финансового мониторинга в кредитных организациях - Сергей Потёмкин"
Шрифт:
Интервал:
Закладка:
Для преодоления отмеченного несоответствия при проведении финансового мониторинга доходность, ликвидность и риски банка следует определять в результате оценки (измерения) искомых показателей с помощью соответствующих бизнес-моделей. В частности, для оценки доходности банка требуется применение модели формирования доходов и расходов по финансовым инструментам.
Модель формирования доходов и расходов по финансовым инструментам может базироваться на данных бухгалтерского учета или на данных аналитического учета сделок, совершаемых банком. В первом случае основные трудности связаны с построением схемы движения средств, влияющих на финансовый результат, по счетам бухгалтерского учета и с расчетом корректировок по методу начисления. Сложности во втором случае обусловлены необходимостью разработки совершенной системы классификации финансовых инструментов в разрезе видов сделок и надежной методики выделения финансового результата и консолидации большого объема неоднородной информации по всем категориям финансовых инструментов.
Вне зависимости от выбранной модели формирования доходов и расходов по финансовым инструментам в процессе ее реализации придется опираться на мотивированное суждение, сформулированное банковскими специалистами. Кроме того, в ряде случаев классификация по финансовым инструментам неоднозначна с точки зрения финансового, управленческого и налогового учета. Как следствие этого, полученная оценка доходности будет содержать какой-то элемент субъективизма. Например, из-за того, что репортные, лизинговые, факторинговые и форфейтинговые сделки допускают неоднозначную экономическую интерпретацию, полученный по ним финансовый результат может оцениваться по-разному.
Мониторинг ликвидности является одной из составляющих системы управления ликвидностью банка, основную задачу которой можно сформулировать как поддержание достаточного уровня ликвидности и платежеспособности банка. Основные аспекты в состоянии активов и пассивов, которые должна учитывать модель, демонстрирующая изменения в ликвидности, – распределение по срокам погашения и динамика их отдельных категорий. Пример модели, демонстрирующей изменения в ликвидности банка, представлен на рис. 3.1. В деятельности банка, как правило, существуют сделки, находящиеся на разных стадиях реализации, – планируемые, срочные, незавершенные, – о которых известно, что в некоторый момент в будущем по ним могут возникнуть требования (или обязательства), и, учитывая эти аспекты будущего изменения ликвидности, возможно получение не только статических, но и динамических характеристик ликвидности.
Рис. 3.1. Пример модели ликвидности банка
Текущая деятельность банка, как и любой коммерческой организации, сопряжена с риском, и как характеристика деятельности этот показатель имеет стратегическую значимость. Управление рисками – важная составляющая финансового менеджмента. Вместе с тем нет не только общепризнанного взаимоприемлемого определения термина «риск», но и отсутствует единая точка зрения на содержание самого понятия риска, поэтому на практике специалисты применяют разнообразные существенно различающиеся между собой трактовки и подходы к оценке риска.
Риск сопутствует деятельности хозяйствующего субъекта на протяжении всего периода его деловой активности и обычно определяется как опасность, возможность убытка или ущерба. Риск расценивается как негативное явление, которое следует если не исключить полностью, то по возможности ограничить. В общем виде комплексный контроль рисков в той или иной форме включает в себя исследование проблемной области, идентификацию, систематизацию, анализ, количественную оценку и управление рисками.
Природа рисков непосредственно связана с неопределенностью исхода, обусловленной неточностью, неполнотой и недостоверностью сведений о возможных событиях. Следовательно, уменьшение неопределенности любым возможным способом обычно приводит к снижению риска. При всей многогранности понятия риска следует выделить три его основных аспекта:
✓ риск предполагает возможность какого-то события;
✓ если событие произойдет, то оно повлечет за собой существенные последствия;
✓ в той или иной форме, как правило, проявляется «человеческий фактор».
Риск с учетом присущих ему особенностей можно определить как ситуативную характеристику деятельности, отражающую неопределенность ее исхода и возможность наступления неблагоприятных последствий. Приведенное определение, не являясь исчерпывающим и совершенным, все же отражает перечисленные аспекты риска.
Оценка рисков имеет большое прикладное значение и является составной частью правил оценки достаточности капитала, установленных новым Соглашением, разработанным Базельским комитетом по банковскому надзору (Базель II). Одной из целей Соглашения Базель II является распространение практики управления банковскими рисками, а также разработка требований к обеспечению надежности применяемых количественных показателей и моделей риска.
Для формализованного описания и оценки рисков банковской деятельности, источником которых является неопределенность финансовых результатов, традиционно используются методы прикладной статистики. В связи с тем что для построения математических моделей банковских рисков могут применяться прямые и косвенные статистические методы, вероятностные модели рисков имеет смысл разделять по этому признаку на модели первого и второго рода.
Вероятностные модели первого рода оперируют оценками вероятности некоторого случайного события P(^) или случайной величины P(X), при этом для их построения применяются различные параметрические и непараметрические методы прикладной статистики. Типичным примером события, вероятность которого может оцениваться посредством модели риска, является банкротство организации. К числу вероятностных моделей, в основе которых лежит применение случайных величин, относится группа моделей оценки стоимости, подверженной риску (Value-at-Risk – VAR). Если последствия реализации риска не носят катастрофический характер и размер связанного с ними ущерба равен Q, то стоимость риска С в рамках вероятностной математической модели применительно к случайному событию A и случайной величине X соответственно удовлетворяет выражениям:
C(A) = P(A) × Q(A);
C ≥ p(X) × Q(X) × dx,
где p(X) – плотность распределения случайной величины X;
Q(X) – размер ущерба как функция случайной величины X.
Вероятность комбинации нескольких случайных событий описывается формулой полной вероятности, в частном случае комбинации двух событий А и В, имеющей вид:
P(A, B) = P(A|B) × P(B) = P(B|A) × P(A).
Сравнивая математические модели риска, оперирующие оценками вероятности некоторого события P(A) или величины P(X), следует отметить, что при прочих равных условиях модели второй группы содержат большее число параметров, сложнее с точки зрения формирования, анализа и применения и при этом являются более информативными. Главным достоинством вероятностных моделей первого рода является возможность при их использовании опираться на весь арсенал доступных методов прикладной статистики.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Формирование системы финансового мониторинга в кредитных организациях - Сергей Потёмкин», после закрытия браузера.