Читать книгу "Объясняя мир. Истоки современной науки - Стивен Вайнберг"
Шрифт:
Интервал:
Закладка:
Нетрудно вывести аналитическую формулу, дающую максимальное значение φ для любого коэффициента преломления n. Чтобы найти максимум φ, примем во внимание тот факт, что точке максимума соответствует такое значение угла падения i, при котором график зависимости φ от i горизонтален, а это означает, что ничтожно малое изменение δφ угла φ, происходящее вследствие ничтожно малого изменения δi угла i, равняется нулю с точностью до первого порядка величины δi. Чтобы использовать это условие, применим табличную формулу из курса дифференциального исчисления, согласно которой при ничтожно малом изменении δх аргумента x изменение arcsin x равно:
где, если arcsin x измеряется в градусах, R = 360°/2π. Таким образом, когда угол падения изменяется на величину δi, угол отклонения меняется на:
или, поскольку δ sin i = cos i δi/R,
Таким образом, условие максимального значения φ таково, что:
Возведя обе части в квадрат и используя правило cos²i = 1 − sin²i (которое является следствием из теоремы Пифагора), мы можем найти из этого выражения значение для sin i:
При этом значении угла падения угол φ максимален:
При n = 4/3 максимальный угол отклонения φ достигается при значении b/R = sin i = 0,86, для которого i = 59,4°, r = 40,2° и φmax = 42,0°.
Закон преломления света можно вывести, исходя из предположения о том, что свет движется по пути наименьшего времени, как было описано в техническом замечании 28. Но его также можно вывести и на основе волновой теории света. По мнению Гюйгенса, свет – это колебания какой-то среды, которая может либо быть заполнена прозрачной материей, либо представляться нам пустотой. Фронт возмущения этой среды являет собой прямую линию, которая движется вперед в направлении своего перпендикуляра со скоростью, характерной для среды, в которой он распространяется.
Рис. 23. Преломление световой волны. И снова горизонтальная линия обозначает границу раздела двух прозрачных сред, в которых свет движется с разными скоростями. Отрезки с поперечными штрихами обозначают фронт волны в разные момены времени – когда передний край фронта волны входит в контакт с границей и когда задний край теряет контакт с границей. Прямые линии со стрелками указывают траектории перемещения переднего и заднего края волнового фронта.
Рассмотрим сегмент такого фронта возмущения длиной L в среде 1, который движется по направлению к границе со средой 2. Допустим, что направление его движения, совпадающее с перпендикуляром к фронту волны, образует с нормалью (перпендикуляром) к этой границе угол i. Когда передний край фронта касается границы раздела сред в точке A, задний его край B еще находится на некотором расстоянии (измеряемом вдоль направления движения волны) от границы, равном L tg i (см. рис. 23). Это значит, что теперь задняя граница фронта волны достигнет пограничной точки D через промежуток времени, равный L tg i/v1, где v1 – скорость распространения возмущения в среде 1. В течение того же времени передний край фронта возмущения будет перемещаться в среде 2 под углом r от перпендикуляра к границе раздела сред к точке C, которая расположена на расстоянии v2L tg i/v1, где v2 – скорость распространения возмущения в среде 2. Когда он пройдет этот путь, волновой фронт, расположенный под прямым углом к направлению своего движения в среде 2, протянется между точками C и D, образуя таким образом прямоугольный треугольник с вершинами A, С и D, в котором угол при вершине C прямой.
Катет AC длиной v2L tg i/v1 – противолежащий углу r в этом треугольнике. Его гипотенуза – отрезок AD, имеющий длину L/cos i (см. рис. 23). Отсюда:
Вспомнив, что tg i = sin i/cos i, замечаем, что множители cos i и L сокращаются, оставляя:
Или, если выразить это иначе,
что и является формулой закона преломления света.
То, что волновая теория света, как доказал Гюйгенс, описывает явление преломления так же, как и принцип наименьшего времени следования, описанный Ферма, вовсе не случайно. Можно показать, что даже в том случае, когда волна движется сквозь неоднородную среду, в которой скорость светового луча плавно меняется в различных направлениях, а не резко на границе раздела сред, из волновой теории Гюйгенса следует, что луч между двумя точками всегда будет следовать по пути наименьшего времени.
Предположим, что мы наблюдаем какой-либо процесс, происходящий с определенной периодичностью на некотором расстоянии от нас. Для определенности возьмем естественный спутник, обращающийся вокруг далекой планеты, хотя приведенный ниже анализ можно применить и к любому другому периодически повторяющемуся процессу. Предположим, что спутник достигает определенного положения на своей орбите в два следующих друг за другом момента времени t1 и t2. Например, это могут быть моменты времени, когда он появляется из-за планеты. Если орбитальный период этого спутника равен T, то t2 − t1 = T. Это период, который мы наблюдаем при условии, что расстояние между нами и планетой постоянно. Но если это расстояние меняется, то он будет сдвигаться от Т в ту или иную сторону на значение, которое зависит от скорости света.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Объясняя мир. Истоки современной науки - Стивен Вайнберг», после закрытия браузера.